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Abstract. A two-body wave energy converter oscillating in heave is studied in this paper. The 

energy is extracted through the relative motion between the floating and submerged bodies. A 

linearized model in the frequency domain is adopted to study the dynamics of such a two-body 

system with consideration of both the viscous damping and the hydrodynamic damping. The 

closed form solution of the maximum absorption power and corresponding power take-off 

parameters are obtained. The suboptimal and optimal designs for a two-body system are 

proposed based on the closed form solution. The physical insight of the optimal design is to have 

one of the damped natural frequencies of the two body system the same as, or as close as possible 

to, the excitation frequency.  A case study is conducted to investigate the influence of the 

submerged body on the absorption power of a two-body system subjected to suboptimal and 

optimal design under regular and irregular wave excitations. It is found that the absorption power 

of the two-body system can be significantly higher than that of the single body system with the 

same floating buoy in both regular and irregular waves. In regular waves, it is found that the 

mass of the submerged body should be designed with an optimal value in order to achieve the 

maximum absorption power for the given floating buoy. The viscous damping on the submerged 

body should be as small as possible for a given mass in both regular and irregular waves. 

1. Introduction.  

The utilization of wave energy has been actively explored for more than 200 years since the first patent 

was applied in Paris in 1799. Hundreds of wave energy converters have been developed in the past 

decades [1-11]. Among all the technologies that appeared in the past decades, point absorber is one of 

the most popular designs and has been considered one of the most promising and cost effective devices. 

The first generation of point absorber is a single body system oscillating in heave. Two characteristic 

devices of a single body wave energy converter are Lysekil [12] and CETO-6 [13]. 

The early theoretical study of single body wave energy converters by Budal [14], Evans [15] and 

Mei [16] show that that the maximum power of an axisymmetric point absorber oscillating in the heave 

under regular wave excitation is 𝑃𝑚𝑎𝑥 =
𝜌𝑔3𝐴2

4𝜔3
, where 𝜌 is water density; 𝑔 is standard gravity; 𝐴 is 

wave amplitude and 𝜔 is wave frequency. In order to achieve this maximum absorption power, the 

natural frequency of the oscillating body needs to match with incident wave frequency. In real 

application, however, this condition is usually hard to realize since the typical incident wave frequency 

is usually very low (0.1Hz-0.2Hz). As a consequence, the dimension of the floating buoy needs to be 

impractically large in order to match its natural frequency with the incident wave frequency.  Based on 

Falcao’s calculation [17], the diameter of the submerged hemisphere needs to be 52.4m in order to match 

an incident wave frequency of 0.1Hz, too large to be practical. Therefore, people have developed 

different methods to approximate this frequency matching condition. In [18], an additional mass is 

attached under the floating buoy to decrease the natural frequency. Suboptimal control methods such as 

latching [19] and declutch control [20] were also developed based on this frequency match condition.  

Another way to develop a resonant wave energy converter is to design an additional body under the 

floating buoy to create a two-body wave energy converter, where the energy is extracted through the 
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relative motion of the two bodies. There are two advantages to add an additional submerged body under 

the floating buoy. Firstly, the second body can act as a reaction body, which makes mooring easier in 

deep water, compared with directly connecting the floating buoy to the seabed. Secondly, the dynamics 

of second body can be utilized to improve the performance of the overall system. Two typical designs 

of two-body wave energy converters are the Powerbuoy (Figure 1 right), which was developed by Ocean 

Power Technology in the USA [21], and Wavebob (Figure 1 left), which was developed in Ireland [22]. 

Both devices use the relative motion between the floating buoy and submerged body to extract energy 

from ocean waves. However, it is found in Figure 1 that the design philosophy of the submerged body 

is quite different between these two devices. Wavebob used a second body with a streamline 

configuration and large mass while Powerbuoy used a resistive heave plate.  

Early studies of two-body wave energy converters mainly focused on regular wave excitation. 

Falnes [23, 24] investigated the concept of using relative motion between a floating buoy and a 

submerged body to harvest energy. He found that it is possible to achieve the optimum power 𝑃𝑚𝑎𝑥 =
𝜌𝑔3𝐴2

4𝜔3
 for a two-body wave energy converter oscillating in heave in regular waves. Korde [25] explored 

the concept of two-body wave energy converter and compared the performance of a submerged reaction 

mass with a reaction mass out of water under regular wave excitation. He found that the submerged 

mass appears to perform better overall. Bijun Wu et al. [26] also studied the response and conversion 

efficiency of a two-body wave energy converter under regular wave excitation and they found that the 

performance of a two-body wave energy converter highly depends on the system parameters, like the 

physical properties of the buoy and incident wave frequency. The results obtained by the previous 

literature helped people to understand that it is possible to design a submerged body to achieve the 

theoretical maximum absorption power under regular wave excitation by neglecting the viscous 

damping. In real application, however, it is necessary to investigate the design of a two-body wave 

energy converter under irregular wave excitation as well. 

Recently, an experiment was conducted by Beatty et al. [27] to compare the hydrodynamic 

performance of the submerged body for Wavebob and Powerbuoy. The authors found that a streamline 

submerged body has a smaller added mass compared with a resistive heave plate. The experimental 

results of added mass and excitation force on the submerged body agreed fairly well with the results 

obtained using boundary element method (BEM) for both prototypes. However, the damping on the 

second body is much larger in comparison with radiation damping obtained with BEM code. Therefore, 

it is necessary to consider the viscous effect while studying the two-body wave energy converter, 

especially for the submerged body. Based on Beatty’s experimental study, in this paper, linearized 

damping is considered to account for the viscous effect. In the case study, the viscous effect on the 

floating buoy was neglected [27].  

 
 

Figure 1. Model of Wavebob (left) and Powerbuoy (right) 

 

Based on the aforementioned literature review, the first objective of this paper is to study the 

dynamics of the two-body wave energy converter, including the viscous effect. In addition to radiation 

damping, a linearized damping due to viscous effect was considered to build the frequency domain 

model. The closed form solution of the absorption power for a two-body wave energy converter was 

obtained in terms of system parameters and wave information under regular wave excitation. The 

suboptimal and optimal power take-off designs are defined based on the obtained closed form solutions. 
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The results presented in this paper are further used to study the influence of submerged body on the 

absorption power of the two-body system.  

The second objective of this paper is to study the design of the submerged body on the overall 

performance of a two-body wave energy converter under regular and irregular wave excitations. When 

the submerged body is deployed far enough from the floating buoy and free surface, the hydrodynamic 

interaction between these two bodies, as well as the radiation damping on the submerged body, can be 

neglected. Numerical simulations were conducted to study the influence of the submerged body on the 

power take-off design and absorption power under regular wave excitation. The suboptimal and optimal 

designs are modified and investigated in irregular waves. The absorption power based on these two 

design principles are also compared with the maximum absorption power of a single body system with 

the same floating buoy. It is found that if the submerged body is designed properly, the absorption power 

of a two-body wave energy converter can be significantly higher than that of a single buoy system with 

the same floating buoy under regular and irregular wave excitation, even in the presence of a large 

viscous damping on the submerged body.  

The remaining of this paper is organized as follows: In Section 2, the linearized model of a two-

body wave energy converter under regular wave excitation is established and the closed form solution 

of absorption power and corresponding power take-off parameters are obtained. In Section 3, suboptimal 

and optimum power take-off design and the corresponding absorption power are studied in regular 

waves. In Section 4, the suboptimal and optimal design are implemented in irregular waves and 

compared with the single body system with the same floating buoy. The constrained simplex method is 

used to find the maximum absorption power of a two-body system under irregular wave excitation. 

Conclusions are given in Section 5.  

2. Dynamics Analysis and Design of Two-body Wave Energy Converter in Regular Waves 

Figure 2 is the schematic of the two-body wave energy converter considered in this paper. A floating 

buoy is located on the water surface and is connected to a submerged body through a power take-off 

(PTO) system. The submerged body is suspended in the water. The energy is extracted through the 

relative motion of the floating and submerged bodies. One should notice that the floating and submerged 

bodies considered in this paper are axisymmetric but they do not need to be cylindrical as shown in 

Figure 2.  

        
Figure 2. (a) Schematic of two-body wave energy converter; (b) Vibration model of a two-body wave 

energy converter 

 

 The power take-off system which is installed between the floating buoy and submerged body is 

assumed to be linear as in most literature, and the take-off force is: 

 

𝐹𝑃𝑇𝑂 = −𝑐𝑝𝑡𝑜(�̇�1 − �̇�2) − 𝑘𝑝𝑡𝑜(𝑥1 − 𝑥2)                                        (1) 

 

One should notice that the submerged body is assumed to be suspended in the water. Therefore, we 

assume 𝑘𝑝𝑡𝑜 ≥ 0 since negative spring stiffness makes the system unstable. The equation of motion of 

a two-body wave energy converter shown in Figure 2 is:  

 

𝑏11 𝑘𝑠 

𝑘𝑝𝑡𝑜 𝑐𝑝𝑡𝑜 

𝑏22 𝑏𝑣𝑖𝑠_2 

𝐹𝑒1 

𝐹𝑒2 

𝑚1 + 𝐴11 

𝑚2 + 𝐴22 

 

𝑥1 

𝑥2 

Incident Wave 

(a) (b) 
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𝑚1�̈�1 + 𝐴11�̈�1 + 𝐴12�̈�2 + 𝑏11�̇�1 + 𝑏12�̇�2 + 𝑏𝑣𝑖𝑠_1�̇�1 + 𝑐𝑝𝑡𝑜(�̇�1 − �̇�2) + 𝑘𝑝𝑡𝑜(𝑥1 − 𝑥2) + 𝑘𝑠𝑥1 =

𝐹𝑒1          (2) 

𝑚2�̈�2 + 𝐴21�̈�1 + 𝐴22�̈�2 + 𝑏21�̇�1 + 𝑏22�̇�2 + 𝑏𝑣𝑖𝑠_2�̇�2 + 𝑐𝑝𝑡𝑜(�̇�2 − �̇�1) + 𝑘𝑝𝑡𝑜(𝑥2 − 𝑥1) = 𝐹𝑒2               

(3) 

where, 𝑥1 and 𝑥2 are the respective heave displacements of the floating and submerged bodies; 𝑚1 and 

𝑚2 are the respective masses of the floating and submerged bodies; 𝐴𝑖𝑗  (𝑖, 𝑗 = 1,2) is the frequency 

dependent added mass which accounts for the mass of the water moving with the 𝑖-th body, induced by 

the motion of 𝑗-th body (1 and 2 represent the floating and submerged bodies, respectively); 𝑏𝑖𝑗 (𝑖, 𝑗 =

1,2)  is the frequency dependent radiation damping coefficient, which  accounts for the energy 

dissipation by the radiated wave due to the motion of the 𝑖-th body, induced by the motion of 𝑗-th 

body; 𝑏𝑣𝑖𝑠_𝑖 (𝑖, 𝑗 = 1,2) is the linearized viscous damping coefficients on the floating and submerged 

bodies; 𝑘𝑝𝑡𝑜 and 𝑐𝑝𝑡𝑜 are the stiffness and damping coefficient of the power take-off system; 𝑘𝑠 is the 

hydrostatic stiffness of the floating buoy, which is the spring effect due to the difference of gravity and 

buoyancy; 𝐹𝑒1 and 𝐹𝑒2 are the exciting forces on the floating and submerged bodies, induced by the 

incident wave.  

Under regular wave (sinusoidal) excitation, the exciting force can be expressed as a harmonic 

function with the following equation: 

 

𝐹𝑒1 = 𝐹1𝑒
𝑖𝜔𝑡,            𝐹𝑒2 = 𝐹2𝑒

𝑖𝜔𝑡                                                     (4) 

 

The solutions of Eqs. (2) and (3) can be expressed as, 

 

𝑥1 = 𝑋1𝑒
𝑖𝜔𝑡,         𝑥2 = 𝑋2𝑒

𝑖𝜔𝑡                                                          (5) 

 

Substitute Eqs. (4) and (5) into Eqs. (2) and (3), respectively. 

 

−𝜔2(𝑚1 + 𝐴11)𝑋1 −𝜔
2𝐴12𝑋2 + 𝑖𝜔𝑏11𝑋1 + 𝑖𝜔𝑏12𝑋2 + 𝑖𝜔𝑏𝑣𝑖𝑠_1𝑋1 + 𝑖𝜔𝑐𝑝𝑡𝑜(𝑋1 − 𝑋2) +

𝑘𝑝𝑡𝑜(𝑋1 − 𝑋2) + 𝑘𝑠𝑋1 = 𝐹1      (6) 

−𝜔2(𝑚2 + 𝐴22)𝑋2 −𝜔
2𝐴21𝑋1 + 𝑖𝜔𝑏21𝑋1 + 𝑖𝜔𝑏22𝑋2 + 𝑖𝜔𝑏𝑣𝑖𝑠_2𝑋2 + 𝑖𝜔𝑐𝑝𝑡𝑜(𝑋2 − 𝑋1) +

𝑘𝑝𝑡𝑜(𝑋2 − 𝑋1) = 𝐹2 (7) 

 

Denote the matrices  

𝑀 = [
(𝑚1 + 𝐴11) 𝐴12

𝐴21 (𝑚2 + 𝐴22)
], 𝐶 = [

(𝑏11 + 𝑏𝑣𝑖𝑠_1 + 𝑐𝑝𝑡𝑜) (𝑏12 − 𝑐𝑝𝑡𝑜)

(𝑏21 − 𝑐𝑝𝑡𝑜) (𝑏22 + 𝑏𝑣𝑖𝑠_2 + 𝑐𝑝𝑡𝑜)
] 

 

 𝐾 = [
𝑘𝑠 + 𝑘𝑝𝑡𝑜 −𝑘𝑝𝑡𝑜
−𝑘𝑝𝑡𝑜 𝑘𝑝𝑡𝑜

] , 𝑋 = [𝑋1, 𝑋2]
𝑇,  𝐹 = [𝐹1, 𝐹2]

𝑇 

 

Eqs. (6) and (7) can be rewritten as: 

 

(−𝜔2𝑀+ 𝑖𝜔𝐶 + 𝐾)𝑋 = 𝐹                                                   (8) 

 

Define 

𝑍(𝑖𝜔) = −𝜔2𝑀+ 𝑖𝜔𝐶 + 𝐾 = [
𝑍11 𝑍12
𝑍21 𝑍22

]                                       (9) 

 

where 𝑍(𝑖𝜔) is the impedance matrix. The elements in 𝑍(𝑖𝜔) can be written as the following equations: 
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{
 
 

 
 
𝑍11 = −𝜔

2(𝑚1 + 𝐴11) + 𝑖𝜔(𝑏11 + 𝑏𝑣𝑖𝑠_1 + 𝑐𝑝𝑡𝑜) + 𝑘𝑠 + 𝑘𝑝𝑡𝑜

𝑍12 = −𝜔
2𝐴12 + 𝑖𝜔(𝑏12 − 𝑐𝑝𝑡𝑜) − 𝑘𝑝𝑡𝑜

𝑍21 = −𝜔
2𝐴21 + 𝑖𝜔(𝑏21 − 𝑐𝑝𝑡𝑜) − 𝑘𝑝𝑡𝑜

𝑍22 = −𝜔
2(𝑚2 + 𝐴22) + 𝑖𝜔(𝑏22+𝑏2𝑣𝑖𝑠 + 𝑐𝑝𝑡𝑜) + 𝑘𝑝𝑡𝑜

                             (10) 

 

The solution of Eq. (8) can be expressed as,  

 

𝑋 = 𝑍(𝑖𝜔)−1𝐹                                                             (11) 

where,  

{
𝑍(𝑖𝜔)−1 =

1

det (𝑍(𝑖𝜔))
[
𝑍22 −𝑍21
−𝑍12 𝑍11

]

det (𝑍(𝑖𝜔)) = 𝑍11𝑍22 − 𝑍12𝑍21 
                                          (12) 

 

The solution of Eqs. (6) and (7) can be obtained as,  

 

𝑋1 =
𝑍22𝐹1−𝑍21𝐹2

det (𝑍(𝑖𝜔))
,  𝑋2 =

𝑍11𝐹2−𝑍12𝐹1

det (𝑍(𝑖𝜔))
                                         (13) 

 

The average absorption power of such a two-body wave energy converter is: 

 

𝑃𝑎𝑣𝑒 =
1

𝑇
∫ 𝑐𝑝𝑡𝑜(�̇�1 − �̇�2)

2𝑇

0
𝑑𝑡 =

1

2
𝜔2𝑐𝑝𝑡𝑜|𝑋1 − 𝑋2|

2                              (14) 

 

By combining Eqs. (10), (12), (13) and (14), the closed-form solution of average absorption 

power 𝑃𝑎𝑣𝑒 can be expressed as: 

𝑃𝑎𝑣𝑒 =
1

2
𝜔2𝑐𝑝𝑡𝑜 |

𝑝+𝑖𝑞

(𝑎+𝑖𝑏)𝑐𝑝𝑡𝑜+(𝑐+𝑖𝑑)𝑘𝑝𝑡𝑜+𝑒+𝑖𝑓
|
2

                                        (15) 

where,  

{
 
 
 
 

 
 
 
 

𝑝 = 𝑘𝑠𝐹2 −𝜔
2(𝑚2 + 𝐴22 + 𝐴21)𝐹1 −𝜔

2(𝑚1 + 𝐴11 + 𝐴12)𝐹2
𝑞 = 𝜔(𝑏22 + 𝑏𝑣𝑖𝑠_2 + 𝑏21)𝐹1 +𝜔(𝑏11 + 𝑏𝑣𝑖𝑠_1 + 𝑏12)𝐹2
𝑎 = −𝜔2(𝑏11 + 𝑏𝑣𝑖𝑠_1 + 𝑏22 + 𝑏𝑣𝑖𝑠_2 + 𝑏12 + 𝑏21)

𝑏 = 𝜔𝑘𝑠 −𝜔
3[(𝑚1 + 𝐴11) + (𝑚2 + 𝐴22) + 𝐴12 + 𝐴21]

𝑐 = 𝑏/𝜔
𝑑 = −𝑎/𝜔

𝑒 = 𝜔4[(𝑚1 + 𝐴11)(𝑚2 + 𝐴22) − 𝐴12𝐴21] − 𝜔
2[(𝑚2 + 𝐴22)𝑘𝑠 + (𝑏11 + 𝑏𝑣𝑖𝑠_1)(𝑏22 + 𝑏𝑣𝑖𝑠_2) − 𝑏12𝑏21]

𝑓 = −𝜔3[(𝑚1 + 𝐴11)(𝑏22 + 𝑏𝑣𝑖𝑠2) + (𝑚2 + 𝐴22)(𝑏11 + 𝑏𝑣𝑖𝑠_1) − 𝐴12𝑏12 − 𝐴21𝑏21] + 𝜔𝑘𝑠(𝑏22 + 𝑏𝑣𝑖𝑠_2)

        (16) 

 

If 𝑘𝑝𝑡𝑜 = 0, by taking the derivative of Eq. (15) with respect to 𝑐𝑝𝑡𝑜, the corresponding suboptimal 

damping is obtained as, 

 

(𝑐𝑝𝑡𝑜)𝑠𝑢𝑏𝑜𝑝𝑡 = √
𝑒2+𝑓2

𝑎2+𝑏2
                                                       (17) 

 

The corresponding maximum absorption power is: 

 

(𝑃𝑎𝑣𝑒)𝑠𝑢𝑏𝑜𝑝𝑡 =
1

2
𝜔2

𝑝2+𝑞2

2√(𝑎2+𝑏2)(𝑒2+𝑓2)+2(𝑎𝑒+𝑏𝑓)
                                               (18) 
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Eq.(17) and (18) are called suboptimal condition of a two body wave energy converter in this paper.  

If 𝑘𝑝𝑡𝑜 > 0, by taking the partial derivative of Eq. (15) with respect to 𝑘𝑝𝑡𝑜 and 𝑐𝑝𝑡𝑜, respectively, 

the optimal conditions of (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 and (𝑐𝑝𝑡𝑜)𝑜𝑝𝑡 are obtained as, 

 

 {

(𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 = −
𝑐𝑒+𝑑𝑓

𝑐2+𝑑2

(𝑐𝑝𝑡𝑜)𝑜𝑝𝑡 = √
𝑒2+𝑓2+(𝑐2+𝑑2)𝑘𝑝𝑡𝑜

2 +(2𝑐𝑒+2𝑑𝑓)𝑘𝑝𝑡𝑜

𝜔2(𝑐2+𝑑2)

                                  (19) 

 

By substituting (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 into (𝑐𝑝𝑡𝑜)𝑜𝑝𝑡, one can get, 

 

 (𝑐𝑝𝑡𝑜)𝑜𝑝𝑡 =
1

𝜔

|𝑐𝑓−𝑑𝑒|

𝑐2+𝑑2
                                                           (20) 

 

By substituting (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡  of Eq. (19) and (𝑐𝑝𝑡𝑜)𝑜𝑝𝑡  of Eq. (20) into Eq. (15), the maximum 

absorption power for such a two-body wave energy converter can be found as: 

 

(𝑃𝑎𝑣𝑒)𝑜𝑝𝑡 =
1

2
𝜔2

𝑝2+𝑞2

2|𝑎𝑒+𝑏𝑓|+2(𝑎𝑒+𝑏𝑓)
                                              (21) 

 

Eqs. (19), (20) and (21) are called optimal condition of a two body wave energy converter in this 

paper. They are identical to the results obtained by Fanles [23] and Recci [28]. The physical meaning 

of  (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡  in Eq. (19) is to match one of the damped natural frequency with the incident wave 

frequency, in a similar way as the resonance condition for single body system. Based on the closed form 

solutions obtained above, one can find that the power take-off parameters are determined by the system 

parameter for the maximum power absorption. Therefore, the design principles of a two-body wave 

energy converter are proposed based on the optimal and suboptimal conditions as follows;  

Suboptimal design: For a given two-body system and incident wave, the PTO stiffness is zero while 

the damping coefficient is defined as Eq.(17), which is determined by buoy and incident wave 

parameters. The maximum power is defined as Eq. (18) for suboptimal design.  

Optimal design: For a given two-body system and incident wave, the spring stiffness and damping 

of the power take-off system are defined as Eq. (19) for (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 ≥ 0. If (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 < 0 for the given 

system, 𝑘𝑝𝑡𝑜 is set to zero and the damping is defined as Eq. (17). The maximum power is defined as 

Eq. (21) for (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 ≥ 0 and Eq. (18) for 𝑘𝑝𝑡𝑜 = 0.  

3. Simulation Results in Regular Waves 

In this section, the closed-form solutions of suboptimal and optimal conditions obtained in Section 2 are 

numerically studied first. The influence of the submerged body on the absorption power of a two-body 

system is also investigated. Since this part is mainly focused on the design of the submerged body under 

regular wave excitation, the floating buoy is chosen as a cylindrical buoy with a diameter of 10m and 

draft of 3.5m. The submerged body is assumed to be axisymmetric with an undefined shape. The added 

mass and radiation damping of the floating buoy were calculated with matched eigenfuction method 

[31-34] and are shown in Figure 3. For an axisymmetric body, based on Haskind relation [24], the 

exciting force 𝐹𝑒𝑖 can be written as: 

𝐹𝑒𝑖 = √
2𝜌𝑔3𝑏𝑖𝑖

𝜔3
𝐴                (𝑖 = 1,2)                                          (22) 

 

where, 𝜌  is water density; 𝑔  is the standard gravity; 𝜔  is the wave frequency;  𝑏𝑖𝑖  is the radiation 

damping of the floating and submerged bodies; 𝐴 is the wave amplitude, which is chosen as 1m.  
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Figure 3. Added mass (a) and radiation damping (b) of the cylindrical floating buoy with a diameter of 10m 

and draft of 3.5m 

 

In addition, the submerged body is assumed to be deployed far enough from the floating buoy and 

free surface (this assumption is widely used for different devices [27, 29, and 30]). As a result, the cross 

coupling added mass (𝐴12, 𝐴21) and radiation damping (𝑏12, 𝑏21) as well as radiation damping (𝑏22) on 

the submerged body can be neglected. With this simplification, the submerged body can be characterized 

with a total mass (𝑚2 + 𝐴22) and a linearized damping (𝑏𝑣𝑖𝑠_2) in Eqs. (2) and (3). The suboptimal and 

optimal design discussed in Section 2 under the influence of the submerged body are numerically studied 

based on this simplified model. 

Based on the experiment results and analysis in [27], it is believed that the damping on the floating 

buoy is dominated by radiation damping. Therefore, the viscous damping on the floating buoy is 

neglected here, i.e.  𝑏𝑣𝑖𝑠_1 = 0 . Moreover, since the floating buoy is the same for all the systems 

considered in this paper, neglecting the viscous damping on the floating buoy does not have any 

influence on the results. The viscous damping on the submerged body 𝑏𝑣𝑖𝑠_2 is dimensionless with the 

following equation,  

𝜁2 =
𝑏𝑣𝑖𝑠_2

2𝑚1𝜔𝑓
                                                                    (23) 

 

where, 𝜁2 is the dimensionless viscous damping on the submerged body; 𝑏𝑣𝑖𝑠_2 is the linearized viscous 

damping coefficient on the submerged body; 𝑚1 is the mass of the floating buoy; 𝜔𝑓 = √𝑘𝑠/𝑚1 is the 

natural frequency of the floating buoy in still water. One should be aware that 𝜁2 = 0.1 means the 

damping on the submerged body is in the same order of the largest radiation damping on the floating 

buoy in Figure 3(b), which is a large damping. 

Figure 4 shows the optimal and suboptimal designs described in Section 2 with a different total mass 

(𝑚2 + 𝐴22) of the submerged body for 𝜁2 = 0. The excitation wave periods 𝑇 are chosen as 8s, 10s and 

12s. In Figure 4(a), the optimum PTO stiffness becomes negative (and the system will be unstable) when 

the total mass of the submerged body is larger than a critical mass 𝑚𝑐. This critical mass can be obtained 

by setting (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 = 0 in Eq. (19), which yields, 

 

𝑐𝑒 + 𝑑𝑓 = 0                                                               (24) 

 

Substitute 𝑐, 𝑒, 𝑑 and 𝑓 from Eq. (16) into Eq. (24) and notice that 𝐴12=𝐴21 = 𝑏12 = 𝑏21 = 𝑏22 =
0 for the system considered here. Eq. (24) can be written as, 

−𝜔4(𝑀1 +𝑀2)
2 +𝜔2[𝑘𝑠𝑀2

2 + 𝑘𝑠𝑀1𝑀2 + 𝑘𝑠(𝑀1 +𝑀2) − 𝑘𝑠
2𝑀2 −𝑀2𝑏11

2 −𝑀1𝑏𝑣𝑖𝑠_2
2 )] −

𝑘𝑠𝑏𝑣𝑖𝑠_2
2 =0    (25) 

 

where, 𝑚1 + 𝐴11 = 𝑀1, 𝑚2 + 𝐴22 = 𝑀2. The critical mass, 𝑚𝑐 = 𝑀2/𝑚1, can be found by solving 

Eq. (25) for the floating buoy described in this Section. When 𝑚2 + 𝐴22 > 𝑚𝑐, the PTO stiffness is set 
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to zero in Figure 4(a) as described in Section 2. The damping coefficients of the suboptimal and optimal 

designs are shown in Figure 4(b), the damping of the optimal design is the same with the suboptimal 

design when the mass is larger than the critical mass. 

 

   
Figure 4. Spring stiffness (a) and damping coefficient (b) of optimum and suboptimum PTO design with 

different total mass of the submerged body. For the results in this figure, the floating buoy is a cylinder with a 

diameter of 10m and draft of 3.5m. The regular wave periods considered here are 8s, 10s, and 12s with an 

amplitude of 1m. The viscous damping 𝜁2 is 0.  
 

Figure 5 considers the influence of various damping 𝜁2 on the suboptimal and optimal design when 

the wave period 𝑇 = 10𝑠. In Figure 5 (a) and (b), with the increase of the viscous damping 𝜁2, the overall 

trend of the power take-off system (stiffness and damping) stays the same, i.e. (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 and (𝑐𝑝𝑡𝑜)𝑜𝑝𝑡 

first increase, then decrease with the increase of 𝑚2 + 𝐴22. The only difference between different lines 

in Figure 5(a) and (b) is the magnitudes of the curves. The magnitudes of 𝑘𝑝𝑡𝑜 and 𝑐𝑝𝑡𝑜  decrease for 

both optimal and suboptimal designs when 𝜁2 increases for the same 𝑚2 + 𝐴22. Since the absorption 

power is proportional to 𝑐𝑝𝑡𝑜, the decrease of 𝑐𝑝𝑡𝑜 leads to the decrease of absorption power.  

 

 
Figure 5. Spring stiffness (a) and damping coefficient (b) of optimum and suboptimum PTO design with 

different 𝑚2 + 𝐴22 and 𝜁2. The floating buoy is a cylinder with a diameter of 10m and draft of 3.5m. The regular 

wave period considered here is 10s with an amplitude of 1m. 

 

Figure 6 (a) shows the damped natural frequency of the optimal design and suboptimal design for 

different choices of 𝑚2 + 𝐴22 when the wave period is 10s and viscous damping 𝜁2 is 0.05. Since the 

power take-off stiffness is zero for the suboptimal design, there is only one vibration frequency (𝜔𝑑)𝑠𝑢𝑏 

for this design. This damped natural frequency (𝜔𝑑)𝑠𝑢𝑏 decreases with the increase of 𝑚2 + 𝐴22, and 

when 𝑚2 + 𝐴22 is around 6 in Figure 6(a), this damped natural frequency is very close to the wave 

excitation frequency. As a result, the maximum absorption power of the suboptimal design is achieved, 

as one can find in Figure 6(b). The corresponding optimal mass  𝑚𝑜  can be obtained by take the 

derivative of Eq. (18) with 𝑚2 + 𝐴22 and set it to zero, 
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𝑑((𝑃𝑎𝑣𝑒)𝑠𝑢𝑏𝑜𝑝𝑡)

𝑑(𝑚2+𝐴22)
= 0                                                          (26) 

 

where, (𝑃𝑎𝑣𝑒)𝑠𝑢𝑏𝑜𝑝𝑡 is expressed in Eq. (18); For a given wave condition and buoy information, one can 

solve the optimal mass 𝑚𝑜 from Eq. (26). One should notice that optimal mass  𝑚𝑜 > critical mass 𝑚𝑐 

when  𝜁2 > 0 and 𝑚𝑜 = 𝑚𝑐  when   𝜁2 = 0. 

 

   
Figure 6. (a) Damped natural frequencies of the two-body system subjected with optimal and suboptimal design. 

The excitation wave frequency is also plotted as a comparison. (b): Maximum absorption power for optimum 

and suboptimum design with different 𝑚2 + 𝐴22 and 𝜁2. For the results presented here, the floating buoy is a 

cylinder with a diameter of 10m and draft of 3.5m. The regular wave period considered here is 10s with an 

amplitude of 1m. 

 

For the optimal design, there are two natural frequencies (𝜔𝑑1 and 𝜔𝑑2) when (𝑘𝑝𝑡𝑜)𝑜𝑝𝑡 > 0, as one 

can find in Figure 6(a). With the increase of 𝑚2 + 𝐴22, one of the natural frequencies (𝜔𝑑1) increases 

while the other one (𝜔𝑑2) matches the excitation frequency when 𝑚2 + 𝐴22 ≤ 𝑚𝑜. When 𝑚2 + 𝐴22 >
𝑚𝑜, the spring stiffness is zero and the damped natural frequency of this system reduces from two to 

one. This damped natural frequency becomes smaller than the excitation frequency with the increase 

of 𝑚2 + 𝐴22, which is the same as the suboptimal design. These results show that the optimal condition 

in Eq. (19) is the resonance condition. In Figure 6(b), when 𝜁2 = 0, the maximum absorption power of 

the optimal design is a constant if 𝑚2 + 𝐴22 ≤ 𝑚𝑜. This means that one can always achieve an optimal 

absorption power when 𝑚2 + 𝐴22 ≤ 𝑚𝑜 with the optimal design.  When  𝜁2 > 0, it is found that the 

maximum power of both optimal and suboptimal designs is achieved when 𝑚2 + 𝐴22 = 𝑚𝑜 for the 

given wave condition. This means that 𝑚2 + 𝐴22 = 𝑚𝑜 is the optimal mass of the submerged body in 

the presence of  𝜁2. Moreover, for the same 𝑚2 + 𝐴22, the increase of  𝜁2 always results in the decrease 

of absorption power. Therefore, one should design  𝜁2 as small as possible when 𝑚2 + 𝐴22 is decided. 

The output power of the single body system with the same floating buoy is also plotted as a comparison. 

It is found that the absorption power of a two-body system is significantly increased in the presence of 

a large viscous damping on the submerged body.  

The maximum absorption power of the optimal design under different wave conditions is plotted in 

Figure 7. The results obtained by Fanles [24] (Eq. (27)) when 𝜁2 = 0  is also plotted as a comparison.  

𝑃𝑚𝑎𝑥 =
𝜌𝑔3𝐴2

4𝜔3
                                                                 (27) 

 

where,  𝑃𝑚𝑎𝑥 is the maximum absorption power for an axisymmetric two-body system oscillating in 

heave without consideration of viscous damping; 𝜌 is the density of water; 𝑔 is the standard gravity; 𝐴 

is the amplitude of incident wave; 𝜔 is the frequency of incident wave.  

In Figure 7, when 𝜁2 = 0, the results of Eq. (21) match well with Fanles’ results. Based on the 

previous analysis, for the given 10m floating buoy, this theoretical maximum can be achieved as long 

as the power take-off is designed as Eq. (19) and 𝑚2 + 𝐴22 ≤ 𝑚𝑐 . When 𝜁2 > 0, the design of the 
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submerged body is unique in order to achieve the maximum absorption power, which is 𝑚2 + 𝐴22 =
𝑚𝑜 for the given 10m floating buoy under certain wave frequency. The maximum power decreases 

dramatically at low frequency with the increase of 𝜁2, but it remains almost the same at high frequency. 

The reason is that the increase of 𝜁2 dramatically decreases (𝑐𝑝𝑡𝑜)𝑠𝑢𝑏𝑜𝑝𝑡  in Eq. (17) at low frequency, 

as one can find from Figure 5(b). The displacement of the floating buoy and submerged body decrease 

while the relative motion remains almost the same in Figure 7(b) when 𝜁2 increases from 0.05 to 0.1.   

 
Figure 7. (a).Comparison of maximum absorption power of optimal design and Fanle’s [24] results with 

different wave frequency. (b) Motion of the floating and submerged body subjected with optimal design for 

different wave frequency.  For the results presented in (b), the wave amplitude and frequency are 1m and 

0.8rad/s, respectively. The floating buoy is a cylinder with a diameter of 10m and draft of 3.5m. 𝑚2 + 𝐴22 =
𝑚𝑐 is calculated with Eq. (26). 

 

In conclusion, based on the results in Figures 4-7, the overall performance of the optimal design is 

better than the suboptimal design when 𝑚2 + 𝐴22 ≤ 𝑚𝑐. This is reasonable, since one of the natural 

frequencies of the system matches with the incident wave frequency by design (𝑘𝑝𝑡𝑜) with Eq. (19). 

The natural frequency of the suboptimal design matches with the excitation frequency only when 𝑚2 +
𝐴22 = 𝑚𝑜. Therefore, when 𝑚2 + 𝐴22 > 𝑚𝑜, the performance of the optimal design worsens with the 

increase of 𝑚2 + 𝐴22  since the natural frequency of the two-body system moves always from the 

excitation frequency. When 𝜁2 > 0 , the absorption power of both the optimal and suboptimal designs 

decreases dramatically for the same design of 𝑚2 + 𝐴22. In this situation, the optimal design of the 

submerged body is unique, which is 𝑚2 + 𝐴22 =𝑚𝑜. In addition, the overall performance of the two-

body system is better than the single body system even if one accounts for a large viscous damping on 

the submerged body.  

4. Design of Two-body Wave Energy Converters in Irregular Waves 

In this section, the influences of the submerged body on the power take-off design and absorption power 

are discussed under irregular wave excitation. In the simulation, the floating buoy is the same as 

described in Section 3 with a diameter of 10m and draft of 3.5m. 𝐴12=𝐴21 = 𝑏12 = 𝑏21 = 𝑏22 = 0. A 

Pierson-Moskowitz spectra shown in Eq. (28), which is an empirical equation that defines the 

distribution of energy with wave frequency in the fully developed sea, is used here to describe the 

irregular waves. 

𝑆(𝜔) = 526𝐻𝑠
2𝑇𝑒

−4𝜔−5exp (−1054𝑇𝑒
−4𝜔−4)                                      (28) 

 

where 𝐻𝑠 is the significant wave height and 𝑇𝑒 is energy wave period. The average absorption power of 

a wave energy converter in the irregular waves can be calculated through the spectrum integration with 

the following equation. 

𝑃𝑖𝑟𝑟̅̅ ̅̅ ̅ = ∫ 𝑃𝑎𝑣𝑒(𝜔)𝑆(𝜔)𝑑𝜔
∞

0
                                                       (29) 
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where, 𝑃𝑖𝑟𝑟̅̅ ̅̅ ̅ is the absorption power of a two-body system in irregular waves; 𝑃𝑎𝑣𝑒(𝜔) is the absorption 

power in regular waves described in Eq. (15). When the floating buoy, submerged body and power take-

off system are determined, 𝑃𝑎𝑣𝑒 in Eq. (15) is a function of the excitation wave frequency. 𝑆(𝜔) is the 

wave spectrum described in Eq. (28). 

In Section 3, it was found that the maximum absorption power of the optimal design can be achieved 

if the spring stiffness is designed in such a way that one of the damped natural frequencies matches with 

the incident wave frequency. In irregular waves, however, it is hard to apply this design principle since 

the excitation is a spectrum instead of single frequency. Therefore, to implement suboptimal and optimal 

design defined in Section 2 in irregular waves, the excitation frequency appeared in Eqs. (17), (18), (19) 

and (21) is chosen as the frequency corresponding to the energy period in Eq. (28), i.e. 𝜔 = 1/𝑇𝑒.  

A constrained complex method described in [35] is used to find the maximum absorption power for 

the two-body system described in this section. The problem is formulated as following: for a given wave 

condition (𝑇𝑒 𝑎𝑛𝑑 𝐻𝑠) and submerged body (𝑚2 + 𝐴22, 𝜁2), the absorption power of such a two-body 

wave energy converter can be written as a function of 𝑘𝑝𝑡𝑜 𝑎𝑛𝑑 𝑐𝑝𝑡𝑜 as the following equations,  

{

𝑃𝑖𝑟𝑟 = ∫ 𝑃𝑎𝑣𝑒(𝜔, 𝑘𝑝𝑡𝑜, 𝑐𝑝𝑡𝑜)𝑆(𝜔)𝑑𝜔
∞

0

0 ≤ 𝑘𝑝𝑡𝑜 ≤ 10
8

0 ≤ 𝑐𝑝𝑡𝑜 ≤ 10
8

                                         (30) 

 

The initial points were chosen randomly from the parameter domain. The details about simplex 

method can be found in [35]. The maximum absorption power of a single body system with the same 

floating buoy subjected with passive damping control is also calculated numerically as a comparison. 

The absorption power is calculated with the following equation. 

 

(𝑃𝑖𝑟𝑟)𝑠𝑖𝑛𝑔𝑙𝑒 = ∫ 𝑃𝑎𝑣𝑒( 𝑐𝑝𝑡𝑜, 𝜔)𝑆(𝜔)𝑑𝜔
∞

0
                                    (31) 

where, (𝑃𝑖𝑟𝑟)𝑠𝑖𝑛𝑔𝑙𝑒 is the absorption power of a single system with the same floating buoy in irregular 

waves; 𝑃𝑎𝑣𝑒( 𝑐𝑝𝑡𝑜, 𝜔) is the absorption power of this single body system in regular waves. 𝑆(𝜔) is the 

wave spectrum described in Eq. (28). 

Figure 8 compares the absorption power of optimal and suboptimal design in irregular waves. The 

maximum absorption power obtained from constrained complex method was also plotted here as a 

comparison. The straight line represents the maximum absorption power of single body system with the 

same floating buoy subjected with passive damping control under the same wave condition. Several 

very useful conclusions can be obtained for a two-body wave energy converter. 

 
     Figure 8. Absorption power of suboptimal and optimal design with different submerged body design. The 

optimization design represents the maximum absorption power obtained from constrained complex method. The 

straight line is the maximum absorption power for single body system with the same floating buoy. For the 

results plotted here, the irregular wave has a significant wave height of 2m and energy period of 10s. The 

floating buoy is a cylinder with a diameter of 10m and draft of 3.5m. 
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(1) If one compares the maximum absorption power of a two-body system obtained from 

constrained complex method (black line) with that of a single body system (blue line with square), it is 

found that the maximum absorption power of a two-body system is more than twice of single-body 

system in the irregular waves considered here. Even if one considers  𝜁2 = 0.05 , the maximum 

absorption power of the two-body system is still almost twice as that of single body system. This 

indicates that the absorption power of a single body system can be increased significantly by designing 

an additional body underneath in the irregular waves.  

(2) The total mass of the submerged body plays a very important role in the two-body system. One 

can find that if the mass ratio is small ((𝑚2 + 𝐴22)/𝑚1 < 1.5), the absorption power of the two-body 

system obtained from the complex method (black line) is smaller than that of the single body system 

(blue line with square). Therefore, the total mass 𝑚2 + 𝐴22 of the submerged body should be large 

enough in order to get a better performance in irregular waves. For the system considered here, (𝑚2 +
𝐴22)/𝑚1>4 can guarantee an increase of absorption power compared with a single body system. In 

addition, if  𝑚2 + 𝐴22 → ∞ , the two-body system is equivalent to a single body system, and the 

absorption power of the two-body system approaches that of the single body system as shown in Figure 

8. The added mass of the submerged body 𝐴22 is usually a shape dependent constant if it is deployed in 

the deep water. This allows people to relate 𝑚2 + 𝐴22 with the dimension of the submerged body in the 

design stage. Take the floating buoy described in this paper as an example, if one wants to design a 

submerged sphere with 𝑚2 + 𝐴22 = 8𝑚1. Based on the linear wave theory [24], the added mass of a 

submerged sphere is half of its mass, i.e. 𝐴22 = 0.5𝑚2. The diameter of the desired sphere is 14m. For 

other complicated shapes, one can resort to commercial software for the design of 𝑚2 + 𝐴22.  

 (3) The linearized damping due to viscous effects 𝜁2  generally has a bad effect on the power 

absorption for a two-body system design. For all the absorption power plotted in Figure 8, increase in 

𝜁2  always results in a decrease of absorption power with the same  𝑚2 + 𝐴22 . Based on [27], this 

damping term is mainly from drag force. Therefore, one should try to minimize the drag coefficient 

while designing the submerged body with desired mass. In this view, the submerged body is 

recommended to be designed with a streamline to decrease the drag damping when 𝑚2 + 𝐴22  is 

determined.  

 
Figure 9. The wave spectra and absorption power of optimal and suboptimal design with different wave 

frequencies. For the results plotted here, the irregular wave has a significant wave height of 2m and energy 

period of 10s. The floating buoy is a cylinder with a diameter of 10m and draft of 3.5m. 𝑚2 + 𝐴22 =
4 and 𝜁2 = 0.05.  

 

(4)  Different from the results in regular waves, the performance of the suboptimal design is better 

than the optimal design when 𝑚2 + 𝐴22 ≤ 𝑚𝑐  , as shown in Figure 8, especially when 2 < 𝑚2 + 𝐴22 <
𝑚𝑐. Despite having the peak power of in Figure 9, the bandwidth of optimal design is narrower than that 

of the suboptimal design and complex optimization method. In addition, one should notice that the 

absorption power of the suboptimal design gets closer to results obtained by the constrained complex 
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method when we increase 𝜁2 from 0.01 to 0.05, especially when 𝑚2 + 𝐴22 > 10. Therefore, if one 

designed the submerged body with a large added mass and drag damping, like a heave plate used in the 

Powerbuoy, the suboptimal design can be used and the absorption power is very close to the maximum 

power.   

5. Conclusion 

A frequency domain model of a two-body wave energy converter is considered in this paper by 

accounting for the viscous damping. The closed-form solution of the suboptimal and optimal absorption 

power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs 

of the two-body wave energy converter are defined based on the obtained closed-form solutions. Despite 

the linearized drag damping and hydrodynamic simplification considered in the simulation, the results 

are believed to be useful to understand the dynamics and design of a two-body wave energy converter.  

A case study is conducted to investigate the influence of the submerged body on the performance 

of a two-body wave energy converter subjected to suboptimal and optimal designs in regular waves. 

If 𝜁2 = 0, the absorption power of the optimal design can always reach the theoretical maximum power 

when the total mass of the submerged body is smaller than the optimal mass. This is because the optimal 

design ensures one of the natural frequencies of the two-body system matches with the incident wave 

frequency. When the total mass of the submerged body is larger than the optimal mass (i.e. 𝑚2 + 𝐴22 >
𝑚𝑜), the absorption power decreases with the increase of the total mass of the submerged body. This is 

because the frequency match condition does not hold any more. The optimal mass is actually the optimal 

design for the submerged body when the damping due to viscous effects on the submerged body is large 

than zero (i.e. 𝜁2 > 0). By comparing the absorption power of a two-body system with a single body 

system with the same floating buoy, it is found that the absorption power can be increased significantly 

even with a large damping due to viscous effects on the submerged body.  

The suboptimal and optimal designs of the two-body wave energy converter are also studied under 

irregular wave excitation by accommodating the energy frequency of the irregular wave in the closed-

form solution. It is found that the maximum absorption power of a two-body wave energy converter is 

more than twice that of a single body system with the same floating buoy for the system considered in 

this paper. Moreover, the total mass of the submerged buoy needs to be designed large enough in order 

to achieve a higher absorption power compared with single-body system. The shape dependent drag 

coefficient should be minimized while designing the submerged body with a desired total mass. 
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