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Abstract. The present paper develops a shell element based on the refined zigzag theory (RZT) 
and applies it to the vibration analysis and optimization problem of the composite sandwich 
plate composed of CFRP skins and soft-cores. The RZT accepts large differences in layer 
stiffness, and requires less calculation effort than the layer-wise or three-dimensional theories.  
Numerical results revealed that the present method predicts vibration characteristics of 
composite sandwich plates with soft-core accurately. Then, shapes of reinforcing fibers in 
CFRP composite skins are optimized to maximize fundamental frequencies. As an optimizer, 
the particle swarm optimization (PSO) approach is employed since curvilinear fiber shapes are 
defined by continuous design variables. Obtained results showed that the composite sandwich 
with optimum curvilinear fiber shapes indicates higher fundamental frequencies compared with 
straight fibers.  

1.  Introduction 
The passive constrained layer damping (PCLD) plate that forms a sandwich structure composed of 
stiff skins and soft-core layers is one of the effective vibration suppression elements since it requires 
no external actuators or heavy dampers and it shows excellent vibration suppression performance. This 
results in the wide range of applications of the PCLD plate in the automobile, marine, and aerospace 
structures [1]. In this study, the laminated fibrous composite plate with curvilinear reinforcing fibers is 
applied to skin layers and optimized their fiber shapes to maximize fundamental frequencies of 
sandwich plates. Laminates with curvilinear fibers are recently gathering attentions from many 
researchers and manufacturers since they indicate the higher performance in the specific situations 
compared with unidirectional straight or woven fibers [2], [3].  

There is a difficulty to predict the vibration behavior of the sandwich plate with soft-core precisely 
by using the traditional laminated plate theories such as classical laminated plate theory (CLPT) [4] or 
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the first-order shear deformation theory (FSDT) [5] due to the large difference in the stiffness between 
skin layers and core material. The CLPT and FSDT assume the deformation of cross-section of 
laminated plate linearly and the PCLD plate indicates non-linear complex deformation shapes due to 
the core layer. To overcome this difficulty, many advanced laminated plate theories have been 
proposed. For example, the discrete layerwise theory (DLT) [6] and the three dimensional theory 
(3DT) [7] define displacements for each layer in the laminates and degree-of-freedoms (DOFs) in the 
thickness direction. These methods enable the precise prediction of the sandwich with soft-core but 
involve high calculation effort due to the rapid increase of DOFs. This is inappropriate to the 
optimization problem which requires a vast number of repeated calculation.  

The refined zigzag theory (RZT) proposed by Tessler et. al. [8], [9] allows the expression of 
linearly varying displacement fields along each layer by modifying those of the FSDT with linear 
interpolation functions defined in each layer. This realizes the precise approximation for complex 
deformation of sandwich plate with soft-core compared with the CLPT and FSDT, and prevents 
increase of the calculation effort. There have been several studies on the application of the RZT. 
Iurlaro et. al. [10] compared the result from RZT with those from 3DT, FSDT, and HSDT in terms of 
free-vibration and buckling problem of composite sandwich plates. In our previous study [11], the 
authors proposed an analysis technique for composite sandwich plates with soft-cores based on the 
Ritz method with displacement functions that satisfy arbitrary combinations of boundary conditions, 
and maximized fundamental frequencies of the sandwich plate by optimizing lay-up configurations of 
composite skins. Finite elements based on the RZT are also proposed from many researchers [12]-[14]. 
However, elements proposed in those studies are one-dimensional beam or triangle shell elements, and 
so far no study proposes quadratic rectangular elements based on the RZT.  

The present study proposes an iso-parametric 8-node quadratic rectangular element and applies it to 
optimization problems of curvilinear fiber shapes in skin layers. The curvilinear fibers are expressed 
by the cubic polynomial functions and coefficients of each term are assigned as design variables. The 
particle swarm optimization (PSO) method is used as an optimizer since it accepts continuous design 
variables. The numerical results calculated by the present shell element indicate good agreement with 
those from solid elements, and obtained optimum fiber shapes result in higher fundamental 
frequencies than those with straight fibers.  
 

2.  Numerical analysis and optimization method 

2.1.  Refined zigzag theory  
A symmetrically laminated N-layer plate with dimensions a × b × h (h: thickness) is considered. 
Displacements in the x, y, and z directions are denoted by u, v, and w. The superscript (k) indicates the 
physical quantities in the k-th layer of the plate.  

Based on the RZT [8]-[9], displacements in the k-th layer are defined by 
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where u(x, y), v(x, y) and w(x, y) are the displacements in the mid-plane of the plate, αx(x, y) and αy(x, 
y) are the angles between the surface normal to the mid-plane and the deformed surface due to the 
shear deformation in each direction. These variables are common with the FSDT, and these are 
corrected by ϕx

(k)(z)Ψx(x, y) and ϕy
(k)(z)Ψy(x, y) in the RZT. The functions ϕx

(k)(z) and ϕy
(k)(z) are the 

zigzag functions which are piecewise linear in each layer, and the functions Ψx(x, y) and Ψy(x, y) are 
amplitudes of the zigzag functions which determine the magnitude of the effectiveness of the 
correction terms. 
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Figure 1. Notation of zigzag function for the 3-layer laminate. 

 
An example of the zigzag function ϕx of the symmetric 3-layer laminate in the x direction is shown 

in figure 1, where z(k) is the z coordinate of the upper surface of the k-th layer, u(k) and v(k) are the 
magnitudes of the zigzag functions ϕx

(k)(z) and ϕy
(k)(z) at z = z(k), and βx

(k) and βy
(k) are the gradients of 

the zigzag function in the k-th layer. 
The zigzag functions in the x and y directions ϕx

(k)(z) and ϕy
(k)(z) are given by 
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k
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k
Q  are the transformed elastic moduli in the transverse directions with respect to the 

material principle axes, and Gx and Gy are also defined by using those, as follows. 
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It is known from equation (4) that the zigzag functions ϕx

(k)(z) and ϕy
(k)(z) are defined by material 

constant and thickness of each layer. The present study limits the plate to symmetric laminate, and thus 
the coupling of the stretching and bending deformation is cancelled, resulting in five independent 
variables, w, αx, αy, Ψx, and Ψy. 
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2.2.  Finite element based on the RZT  
The present study limits the plate to symmetrical laminate, and coupling between in-plane and out-

of-plane direction is cancelled. The bending stiffness D and shear stiffness G are only used to calculate 
natural frequencies. The resultant stress and strain relation of symmetrically laminated plate in the out-
of-plane direction is given as follows. 

 

�
Mb
Qs
�= �D 0

0 G� �
eb
es
�=Dtκ (6) 

 
where Mb and Qs are resultant moment and shear force vectors, and eb and es are the curvature and 
shear strain vectors. G is defined with the gradient of zigzag function βx and βy as follows. 
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The element strain energy Ue and kinematical Te energy are given as  

 

 (8) 

 (9) 

 
where Ae is element area, δe is element displacement vector, and Ke and Me are the element stiffness 
and mass matrixes.  

After assembling energies of all elements and minimizing the total potential energy, the frequency 
equation is obtained as follows.  

 
2 0ω− =K M  (10) 

 
where K and M are total stiffness and mass matrixes and ω is angular frequency. Using the material 
constants of skins and the reference stiffness D0 = E2h3 / 12(1-ν12ν21), the obtained frequency is 
normalized as follows. 

 
1/ 2

2

0
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 (11) 

 
where Ω is the non-dimensional frequency or frequency parameter.  
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2.3.  Expression of curvilinear fiber shape 
A cubic polynomial function f(x,y) is introduced to define curvilinearly shaped fibers, as 

 
2 2 3 2 2 3

00 10 01 20 11 02 30 21 12 03( , )f x y c c x c y c x c xy c y c x c x y c xy c y= + + + + + + + + +  (12) 
 
where cij (i, j = 0, 1, 2, 3) are shape coefficients which determine the surface shape. An example of a 
surface and the corresponding curves are shown in figure 2(a), and figure 2(b) indicates contour lines 
of the surface projected on the horizontal plane. A range of shapes of surfaces could be described with 
this expression by varying the values of the coefficients cij. It is difficult to employ continuously 
curved fibers in the FEA, and the fibers are discretised at each element and dealt with as straight 
fibers. The fiber orientation angle θn,p  at the p-th element in the n-th layer is defined as the tangential 
direction of the contour lines using the coordinates (xc, yc)p of the center of the element, which is 
calculated using the following equation. 

 
1

,
,

/( , ) tan ( )
/

c c

n p c c
x x y y

f xx y
f y

θ −

= =

∂ ∂
= −

∂ ∂
 (13) 

 
It is assumed that each element has a straight fiber with a constant volume fraction but different 

orientation angle, and the discrete shape of figure 2(b) is shown in figure 2(c). The angles are defined 
by a continuous polynomial function and this description imposes continuity constraints on the fiber 
directions between neighbouring elements. The present description accepts closed shapes which may 
be effective to reinforce the around circles.  

 

 
Figure 2. Example of curvilinear fiber expression. 

 

 
Figure 3. Plate shapes and dimensions 
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Table 1. The lowest three natural frequencies obtained from the SOLID, the FSDT, and the present 
RZT for three models. 

 

Model Dimension [mm] Mode 
Natural frequency [Hz] 

SOLID FSDT RZT 

Ex.1 a = b = 150, 
h = 15 

1st 2021 4487 2032 
2nd 2657 5805 2667 
3rd 3732 8119 3742 

Ex.2 

a = b3 = 150,  
b1 = 30,  
b2 = 60,  
h = 15 

1st 446 849 446 
2nd 1001 2022 1003 
3rd 1915 4182 1925 

Ex.3 

a = b = 150,  
c = d = 75, 
 r = 37.5,  

h = 15 mm. 

1st 2843 6282 2855 
2nd 2879 6347 2890 
3rd 4244 8403 4299 

 
Table 2. Material constants for graphite/epoxy (CFRP) and polyvinyl chloride (P). 

 
Material Values 

CFRP E1 = 138 GPa, E2 = 8.96 GPa, ν12 = 0.30, ρ = 1578 kg/m3 
Polyvinyl 

chloride (P) E = 0.104 GPa, ν = 0.30, ρ = 1400 kg/m3 

 
 

3.  Numerical results 

3.1.  Accuracy of the present calculation method 
Figure 3 shows shapes of the composite sandwich plates employed as examples in this study. 

Example 1 is the square plate, example 2 is wing shaped plate, and example 3 is the plate with a hole 
at the center. Dimensions of each example are listed in table 1. Materials are assumed as 
graphite/epoxy or CFRP composites for skins and polyvinyl chloride (P) for soft-cores, and those 
material constants are listed in table 2 where E1 and E2 are the Young’s moduli in the fiber and normal 
to the fiber directions. ν12 is the Poisson’s ratio in the corresponding direction, and ρ is material 
density. 

To validate the present RZT element, the results are compared with those from the SOLID element 
and shell element formulated by the FSDT. Boundary conditions for each pate are that examples 1 and 
3 are totally clamped plate and example 2 is the cantilever with the clamped left edge. From 
preliminary mesh study, the numbers of meshes for examples 1 and 3 are decided to 10 × 10, and 
example 2 to 9 × 15 in the in-plane direction. The number of meshes for the SOLID model in the 
thickness direction is six, and meshes for the in-plane direction are same with shell models. The final 
size of matrixes used in eigenvalue calculation for example 1 becomes 9339 × 9339 for SOLID, 1023 
× 1023 for FSDT, and 1705 × 1705 for RZT. That is, the present RZT requires only 3.33 % sized 
matrix for eigenvalue calculation compared with SOLID model, resulting in low calculation effort.  

Table 1 lists the lowest three natural frequencies for three examples. Unidirectional, 0°, CFRP 
skins are used for both sides [0/P/0] and thickness of each layer is equal, 5 + 5 + 5 = 15 mm.  
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Figure 4. Cross-sectional lay-out of the optimization problem. 

 
From table 1, all frequencies results in good agreement between SOLID and RZT, but the FSDT gives 
much higher frequencies than others. This is because the FSDT approximates deformation in the 
thickness direction linearly for whole thickness, and could not express the complex deformation of 
soft-core in the composite sandwich, which assumes the equivalent stiffness for whole thickness 
higher than those really have. The present method has 3.33 % matrix size compared with solid element 
and indicates good agreement with the solid element in terms of deriving natural frequencies. 
Therefore, the validity and effectiveness of the present method are confirmed from these comparison.  

 

3.2.  Optimization problem 

3.2.1.  Optimization conditions. It is known from the past study [2] that the curvilinear fibers have 
advantages for unsymmetrical boundary conditions over symmetrical ones. So, the optimization 
results are given for common examples with section 3.2 but the different boundary condition for 
examples 1 and 3, which is the clamped, simply supported, free, and free edges with the point-
supported upper-right corner where the direction is from plate left edge in the counter-clockwise 
direction. A lay-up condition of the sandwich plate is described in figure 4. It has symmetric eight skin 
layers with equal thicknesses and twice thickness in the core material.  

The present optimization problem can be formulated as follows. 
 
Maximizing:  fundamental frequency parameter 

Design variables:  (i, j = 0, 1, 2, 3; k = 1, 2, 3, 4) 
Subject to: c00 = 0.0 
 

where cij
(k) are the coefficients of each term in equation (12) of the k-th layer. The design variables are 

continuous numbers here, and the particle swarm optimization (PSO) method is employed as an 
optimizer. The PSO is one of the effective meta-heuristic solutions and mimics behaviour of flock of 
birds or fish. Many particles expressing solutions move around in the solution space with interactions 
each other and search the promising region precisely. The position vector xm(t) of particle m at the t-th 
research is updated by  

 
   (14) 
 

where vm(t) is the velocity vector and is updated by  
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(15) 

 
where xpbest, m is the personal best of m-th particle and xgbest is the global best solution found during the 
past all iterations.  Due to this, interactions between solutions are kept. The coefficient r1 and r2 are the 
random numbers from 0 to 1, and W, C1 and C2 are weight coefficients to be defined by the operator. 
In the present optimization problem, the following PSO parameters are used, and these values are 
determined based on the numerical experiments.  
 

The number of particles Np = 100 
The number of iterations T = 100 
Weight coefficients W = 0.5, C1= C2= 0.9 

 
 

Table 3. Maximum fundamental frequencies for three examples from curvilinear and linear fibers. 
 

No. 
Frequency parameter [-] Optimum lay-up 

with straight fiber Improvement [%] 
Curvilinear opt. Straight opt. 

Ex. 1 16.44 14.76 [45/-75/-75/45]s 11.37 

Ex. 2 8.063 7.941 [-15/-15/-15/-15]s 1.54 

Ex. 3 16.66 15.27 [75/15/90/30]s 9.07 

 

3.2.2.  Optimization results. Table 3 lists maximized fundamental frequency parameters Ω1 of three 
examples for the plates with the present curvilinear and with the traditional straight fibers, optimum 
lay-ups for plates with straight fibers that are obtained by using the layerwise optimization (LO) 
method [11], and improvement ratios based on straight fibers. The frequency parameter Ω1 is 
normalized frequency defined by equation (11). Obtained optimum curvilinear fiber shapes that are 
discretised in each element are indicated in figure 5, and corresponding coefficients of equation (11) 
for each layer are detailed in table 4.  

It is known from table 3 that the present plates show higher fundamental frequencies than the 
straight fibers for all examples, and thus curvilinear fibers reinforce the composites including 
sandwich plate with soft-core effectively compared with traditional straight fibers. Improvements are 
about ten percent for examples 1 and 3, and a small improvement is obtained in example 2. This is 
because example 2 has the simple boundary condition and consequently it results in the simple 
vibration mode shape. The first vibration mode shapes for three examples are given in figure 6. 
Examples 1 and 3 have asymmetric boundary condition and show complex contours. The fibers in the 
first and third layers orient normally to the clamped left edge and incline to other edges. To suppress 
the deformation of plate, fibers are across peaks of contour (red parts) normally in the most layers. The 
stream of fibers from clamped and simply supported edges to the point-supported corner is also seen in 
the first layer. In contrast with these, in example 2, obtained fiber shapes show low curvatures and are 
close to the straight fibers. From these, it is revealed as with [2] that the curvilinear fibers are effective 
especially for the plate with complex deformation shape since curved fibers form flexibly to the 
deformation shape and suppress it effectively.  
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Ex. 1 

    

Ex. 2 

    

Ex. 3 

    
 1st layer 2nd layer 3rd layer 4th layer 
Figure 5. Optimum fiber shapes discretiezed in each element for symmetric 8-layer skins. 

 

   
Ex. 1 Ex. 2 Ex. 3 

Figure 6. Vibration mode shapes for the three sandwich plates with optimum 
curvilinear fiber shapes. 

 
4.  Conclusions 
The present study proposed a new shell element based on the refined zigzag theory that accepted large 
differences between laminates and saved the increase of degree-of-freedom (DOF). Then, the element 
was applied to the optimization problem of composite sandwich with curvilinear reinforcing fibers in 
the skin layers. Curvilinear fibers were expressed by using the cubic polynomial surface, and each 
coefficient of polynomials were used as design variables. The objective function to be maximized was 
fundamental frequencies of sandwich plates. The particle swarm optimization (PSO) was employed as 
an optimizer since it accepted continuous design variables and had high convergence property. 

 From numerical experiments, the present element indicated the similar calculation accuracy with 
the solid element in terms of natural frequencies of composite sandwich with soft-core, and the 
calculation effort of the present method was quite small compared with the solid element. Optimized 
fiber shapes resulted in higher fundamental frequencies than the straight fibers since they formed their 
shape flexibly and effectively to suppress the deformation of the structures. Therefore, it was 
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concluded that the proposed element is useful to predict and design the vibration characteristics of the 
composite sandwich plates with soft-cores. 
 

Table 4. Coefficient of each term for optimum fiber shapes. 
 

No. Layer 
Opt. shape coefficient cij 

c10 c01 c20 c11 c02 c30 c21 c12 c03 

Ex.1 

1st 0.10 -0.17 -2.13 -1.39 3.04 -0.06 0.23 0.36 3.49 
2nd 4.55 1.77 -0.01 0.95 -3.16 1.42 -6.65 0.68 1.80 
3rd 2.96 3.64 2.43 -22.54 -0.95 0.79 1.23 -1.56 -6.15 
4th -5.08 3.83 0.64 -2.75 4.68 1.01 -1.77 1.76 31.87 

Ex.2 

1st 0.02 1.66 3.03 1.92 -3.23 1.07 1.86 0.49 1.41 
2nd 0.11 2.48 2.33 4.57 -2.29 8.20 5.78 -2.13 0.56 
3rd -0.24 2.85 1.65 7.41 3.04 2.82 2.91 0.29 3.48 
4th -0.07 1.35 3.70 2.81 1.03 -1.70 7.53 -7.93 -9.65 

Ex.3 

1st 0.33 0.37 1.02 -8.17 9.26 -45.19 -9.76 13.38 1.79 
2nd 2.25 0.24 7.14 0.08 2.04 -0.08 2.68 -1.71 9.48 
3rd 1.50 1.78 2.25 -10.32 -1.11 1.46 -3.12 1.70 -1.13 
4th -1.68 -0.82 0.68 -54.83 68.24 1.88 -0.07 1.41 1.08 
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