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Plasmon coupled nanoparticle arrays for fluorescence, 

photoluminescence and Raman scattering enhancement. 

V E Kaydashev, N Lyanguzov, D Zhilin, A Tsaturyan, E A Raspopova and 

E M Kaidashev 

Southern Federal University, Rostov-on-Don, 344090, Russia 

Abstract. We study the enhancement of the fluorescence an photoluminescence by large 

homogeneous arrays of plasmon coupled 5-8 nm Au and Ag nanoparticle separated by 

distances less than 10 nm. A red shift of the major “symmetric” plasmon mode near 780 nm, 

and additional “anti-symmetric” plasmon mode centered near 310 nm evidence the plasmon 

coupling in Au particle arrays. The systems were found to be effective in enhancement of the 

fluorescence/photoluminescence processes. 

1. Introduction

The ability of plasmon nanoparticles to concentrate electromagnetic radiation in the near field 

make them powerful probe to study ultralow concentrations of chemical and biological species by 

surface enhanced Raman scattering (SERS), fluorescence or chemiluminescence imaging [1-4]. 

Electromagnetic filed redistribution in vicinity of a single plasmon nanoparticle may cause a 

quenching or enhancement of molecule fluorescence [5]. The metal nanoparticle may change i) a 

local field distribution and ii) increase the intrinsic decay rate of the fluorophore. Thus, the total 

effect of particle on the fluorescence is a superposition of two factors, notably,  stronger excitation 

rate and the increase of the quantum yield (QY) / decrease the fluorescence  lifetime [6-8]. When 

the electric field is M times enhanced near the isolated nanoparticle, which is not plasmon coupled 

with others, a Raman cross section of scattering molecule is enhanced by a factor of ~|M|
4
, whereas 

the fluorescence cross-section of the species is increased ~|M|
4
/|Md|

2
 times. Here |Md| denotes an

amplification factor of the excited state decay rate for a molecule in vicinity of nanoparticle. More 

specifically, when for instance, a phosphor molecule is in the immediate vicinity of 40 nm silver 

particle, i.e. the distance is ~5Å, |M|
2
 factor reaches value of 20-40, whereas |Md|

2
≈10

6
. Thus, one

can expect a fluorescence quenching by a factor of ~10
3
 compared with the free-molecule case 

[9,10]. With increasing the particle-molecule distance to ~8-10 nm the fluorescence cross section is 

increased and passes through the maximum because |M|
4
 decreases more rapidly that |Md|

2
 [6,9].

Still, M is not too high at any distance from a single spherical nanoparticle and, thus, large Raman 

enhancement does not occur and one can expect only a moderate fluorescence enhancement at 

distance of ~5-10 nm from the metal particle [5]. The local electromagnetic fields are completely 

changed when the distance between adjacent particles becomes smaller then ~10 nm and the 

plasmon modes of single nanoparticles become coupled [11]. So called “hot spots” in percolation 

films and “self-similar” nanoparticle arrays are discussed since pioneer paper by Li et.al.[12], 

further theoretically characterized in [13,14] and are summarized in review [15]. The considerable 

shift of the “symmetric” plasmon resonance band from 500 nm to 1500 nm and appearance of 

another band in UV-green of an “anti-symmetric” plasmon mode in strongly coupled ~80 nm 
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particle assemblies with inter-particle spacing of ~1-2 nm was recently demonstrated by Hanske 

et.al [16]. Gaint  SERS and fluorescence enhancement induced by strongly coupled 

nanoparticles using precisely controlled nano-engineering were demonstrated only a few years ago 

[8,17]. More specifically, a 473-fold fluorescence enhancement for fluorophore with QY=0.3 was 

reported for Au dimers with gap distance of ~6 nm [17] and more than 1000-fold fluorescence 

enhancement near nanorod for low QY (1.9-2.5%) [18].  Electron beam lithography is 

normally used to design plasmon nanoobjects in precisely controlled way but on small area. In 

particular, an array of  bowtie nanoantennas with a gap down to 6 nm was presented recently [11]. 

Self-assembling techniques namely nanosphere lithography and template assisted assembling [16], 

drying of colloids [19], use of ligands to produce nanogaps [20] and other deposition techniques 

allow design quasi-homogeneous arrays of nanoparticles on the large areas.  We study the 

capability of vacuum based methods such as pulsed laser deposition (PLD) and magnetron 

sputtering to design large homogeneous arrays of plasmon coupled Ag and Au nanoparticles for 

fluorescence enhancement and SERS.  

2. Experimental

The special feature of nanoparticle arrays morphology produced by depositing a metal film in 

vacuum and Ar gas were characterized using FE-SEM Zeiss SUPRA 25. Optical absorption spectra 

were studied using UV/Vis Spectrophotometer Varian 5000. The influence of Au particle arrays on 

the fluorescence of Rhodamine B dye and on the ZnO photoluminescence were studied under 

excitation at 514 nm (Ar+ laser) and at 325 nm (He-Cd laser), correspondingly. The spectra were 

detected by using Renishaw inVia Reflex Raman spectrometer with spectral resolution better than 

1 cm
–1

.  All the samples were excited at normal angle to the substrate with the fluorescence/PL 

emission being collected in the backward direction. As a metal-enhanced fluorescence has a 

radiation pattern with maxima in forward and backward directions one may expect that ~50% of 

emitted light was collected. The areas with/without nanoparticles were prepared on the same 

substrate and the identical measurement conditions were used to minimize an uncertainty. 

3. Results and discussion

To illustrate the influence of the ambient gas on the nucleation of a metal film we studied in-situ 

the PLD growth of semi-continuous Au film in vacuum (10
-5

 mbar) and in Ar (0.7 mbar) 

atmosphere at room temperature. Laser ablation was done by focusing a KrF (248 nm, 10Hz) laser 

beam on a rotating target to give a fluence of ~2 J cm
−2

 on a 10 mm
2
 rectangular spot. For 

deposition in vacuum a target to substrate distance was 5 cm. The DC resistance of the Au film 

growing in vacuum on ZnO/a-Al2O3 substrate was measured in situ as a function of laser pulse 

number (Figure 1).  With increasing deposited material and fractional coverage f, nanoparticles 

grow to reach a percolation threshold at  f=fc . As the film keeps growing the isolated nanoparticles 

((1) in Figure 1) transform to a semi-continuous (f>fc) ((2, 3) in Figure 1) and, finally, a continuous 

(f=1) film at an equivalent mass thickness more than 10 nm. The percolation threshold for Au films 

in the discussed deposition regime corresponds to ~100-200 laser pulses. 

When ablating Au in the heavy ambient gas such as Ar, one may easier obtain more 

homogeneous arrays of ~5-8 nm Au nanoparticles separated by distances less than 10 nm. The 

number of laser shots corresponding to percolation threshold is ~600-800 pulses in this case. The 

vacuum chamber was evacuated down to 2×10
-4

 mbar and an Ar flow was introduced to maintain a 

pressure of 0.7 mbar. Au particles were deposited at room temperature. A reduced target to 

substrate distance of ~3.5 cm was used, which roughly corresponds to stopping distance of a laser 

plume at this pressure. An array of “small” Au nanoparticles less than 10 nm separated by gaps less 

than 10 nm is obtained for 500 laser shots (Figure 2a).  
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Figure 1. The DC resistance of the growing Au film on ZnO/a-Al2O3 substrate measured in situ 

as a function of laser pulse number. SEM images (1)-(3) of the samples deposited for respective 

number of laser shots are shown in the inset.  

Ag nanoparticle arrays were deposited by DC-magnetron sputtering at room temperature 

(Figure 3a). A rotating substrate was maintained at 8 cm from the Ag (99.8%) target. Ag films were 

deposited at 3.2*10
-2

 mbar of Ar ambient pressure. The discharge voltage and current were 

maintained at to be 100 V and 35 mA, respectively.  

Figure 2. A typical Au nanoparticle array produced by PLD in Ar gas at 0.7 mbar (a); optical 

absorption spectra of “small” plasmon coupled nanoparticles (b); fluorescence of  Rod B and 

Raman scattering enhanced by the  array of “small” nanoparticles; minor effect of “large” not 

coupled nanoparticle array on fluorescence (d) 

Saint Petersburg OPEN 2016 IOP Publishing
Journal of Physics: Conference Series 741 (2016) 012145 doi:10.1088/1742-6596/741/1/012145

3



Optical absorption spectra of isolated small Au nanoparticles normally show a single major 

plasmon resonance peak near 520 nm. Higher energy shoulder is often attributed to d→ sp 

transitions of gold. Still, additional plasmon mode caused by plasmon coupling may also appear in 

this range when the inter-particle distance is reduced to nanometers [13]. Absorption spectra of Au 

nanoparticle array onto SiO2 substrates deposited in Ar gas revealed two plasmon bands evidencing 

that plasmon coupling occurs (Figure 2b). More specifically, a major “symmetric” plasmon mode 

is shifted to red and appears near 780 nm, whereas additional “anti-symmetric” plasmon mode was 

centered near 310 nm [13,14]. Similar increase of optical absorption in the UV range can be 

followed in spectra presented in several previous studies of strongly plasmon coupled 

nanoparticles, namely in [18,16], but the origin of such behavior was not discussed there.  

Similar, Ag nanoparticle arrays deposited onto ZnO films show plasmon coupling behavior. 

Apart from the major plasmon resonance  near 500-530 nm an additional broad band in UV/blue 

region with photon energy higher the band gap of  ZnO was observed (Figure 3b, c). In the case of 

silver the d-band of the ground state is completely separated from the sp-band, thus the d→ sp 

transitions show higher photon energies than those of Au. Thus, the observed increase of the 

optical absorption in the UV region is likely originated from the “beginning” of the plasmon 

coupling rather than from the d→ sp transitions [14]. For Ag particle array a “symmetric” mode is 

shifted to lower photon energy for ~57 nm  and  ~35 nm with increase of Ag content in the case of 

particle arrays on SiO2 snd ZnO surfaces, respectively  (Figure 3b, c). The UV broad band 

corresponding to “anti-symmetric” plasmon mode becomes more pronounced with increase of Ag 

content for both cases (Figure 3b, c).  

Figure 3. SEM image of Ag nanoparticle array (a), optical density of Ag particles on SiO2 

(b), optical density of Ag particles onto ZnO (substrate subtracted) (c), and ZnO 

photoluminescence enhanced by Ag particles (d). 

We examined the effect of “small” nanoparticle arrays on the fluorescence of Rhodamine B 

(Rod B) dye dissolved in the ethanol with concentrations of 5×10
-5

-5×10
-8

 Mol/l. The fluorescence 

self-quenching is insignificant at such Rod B content [21]. Rod B molecules have an optical 

absorption in the range of 480-560 nm with a maximum near 550 nm and a fluorescence in the 
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range of 530-630 nm with maximum near 569 nm. Thus, we use Ar
+
 laser light (514 nm) to excite 

fluorescence of Rod B dye.  

Both Ag and Au nanoparticle arrays were found to be capable to enhance fluorescence/ 

photoluminescence cross-section concentrating the electric field near the surface in the gaps 

between the particles. In particular, the detected fluorescence of a Rod B (5×10
-8

 Mol/l) was ~2.55 

fold and Raman modes of dye and ethanol were more than ~2.3 fold enhanced by “small” Au 

nanoparticle array (Figure 2c), whereas a homogeneous array of “large” (~40 nm) well separated 

(not coupled) nanoparticles does not show or show minor  (~1.4 fold) enhancement (Figure 2d). 

This supports our assumption that our “small” particle arrays are plasmon coupled systems, though 

the coupling is not too strong yet.  

As noted above the plasmon coupled particles enhance fluorescence enhancement by i) 

concentrating the local electric field intensity in gaps, i.e. by increase of the excitation rate of a 

fluorophore ii) by increasing the quantum yield/decreasing the fluorescence lifetime. The first 

effect is optimal when the absorption of fluorophore is maximal at the wavelength of the plasmon 

resonance. On the other hand spectral overlap between plasmon mode and fluorophore emission 

spectrum should also have overlap. The most fluorescence enhancement is expected to the red of 

the plasmon resonance [22]. The efficiency of the two effects is defined by geometry of an array, 

position of fluorescent molecule, by the overlap between plasmon modes and absorption/emission 

spectra of fluorophore and by its initial quantum efficiency. We believe that the geometry on an 

array may be further optimized by adjustment the deposition conditions to diminish the inter-

particle gaps. Note, that in present study optical absorption of a “small” Au nanoparticle array has a 

minimum near ~520 nm and the “symmetric”/“anti-symmetric” plasmon modes have lower/higher 

photon energy, which is not optimal to enhance a fluorescence of Rod B. Rod B has high quantum 

yield of ~65%, which is already high, and this value can`t higher than 100%. Thus, we expect that 

the discussed nanoparticle arrays would be more effective to enhance the fluorescence of chemical 

and biological species with better overlap of particle plasmon bands and absorption/emission 

spectra of fluorophore. Fluorophores with low QY may also help better characterize the ability of 

the arrays and is the subject of further study. 

To further enhance the efficiency to detect fluorescence and Raman response we designed a two 

sandwich-like structures of Ag particles/ ZnO(35nm)film/Ag(30nm)/ZnO(200nm)/a-Al2O3 by DC-

magnetron sputtering and PLD methods.  The Ag “mirror” was separated from the particle array to 

effectively collect a light emitted in backward direction. The 35 nm  thick ZnO spacer was 

deposited at room temperature. The equivalent thickness of the top Ag layers was calculated to be 1 

and 0.5 nm.  

Ag nanoparticle arrays without “mirror” show ~2 fold enhancement of ZnO exciton 

photoluminescence (Figure 3d). Using a sandwich-like structure with Ag “mirror” under the Ag 

particle array the ZnO photoluminescence was further enhanced and the PL response was ~3.5 

times higher in comparison with pure ZnO layer. 

In summary we studied the possibilities to produce a plasmon coupled nanoparticle arrays by 

PLD and magnetron sputtering techniques. Absorption spectra of arrays of “small” Au 

nanoparticles less then 10 nm and separated by less than 10 nm gaps revealed two plasmon bands 

evidencing that plasmon coupling occurs. The fluorescence of a Rod B dye molecules (5×10
-8

 

Mol/l) is ~2.55 fold enhanced by the “small” particle array. The 1.5 fold higher efficiency to collect 

the fluorescence response by use of Ag “mirror” under the particle array is demonstrated. 
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