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Abstract. In this paper Monte-Carlo modeling is in use in order to further approve and 

quantify the concept of effective transport level in the respect to organic materials with correlated 

disorder. We consider a model of dipole glass (simple cubic lattice, which sites are 

occupied by randomly oriented dipoles). Both the absolute values and dependence of the 

effective transport level on the disorder and temperature, in the limit of low electric field, is 

very similar to the same in the case of uncorrelated disorder 

1. Introduction

Organic optical-electronics devices, such as light-emitting diodes, photovoltaic сells, consist of thin 

active layers. Predictive modeling of operation of such devices unavoidably needs correct 

characterization of charge transport in organic layers. The concept of transport level [1] (or 

transport energy) is known to be a useful tool for analytic modeling, providing uncorrelated 

Gaussain disorder [2], because it can simplify the description of hopping transport greatly. By the 

use of transport level concept, which is an analog of mobility edge, mobility of charge carriers can be 

calculated in analogy with multiple trapping model.  

Transport level is neither an energy of final state after the first jump from a deep state nor a most 

visited energy in course of transport. So one needs to consider random walk of a carrier inside a 

region of some radius around initial state [1]. Model of dipole glass is the simplest model of 

disordered organic materials that have polar molecules and where energetic disorder is spatially 

correlated [2]. Previously, an applicability of effective transport level concept [1] to disordered 

organics with correlated disorder was shown qualitatively by Monte-Carlo modelling in the 

framework of the dipole glass model [3]. The purpose of this paper is to test this applicability again 

by the means of more effective algorithm, quantify the temperature dependence of the effective 

transport level and compare it with analogous results, which were obtained previously [1] in the 

framework of uncorrelated Gaussian disorder model [2]. 

2. Monte-Carlo procedure and scheme of modeling

In MC simulations we use the same approach to the modeling of random walk in disorder 

media [4], that was applied in our previous works [[5], [6]]. H opping centers are located at sites of 

a simple cubic lattice, all sites occupied by dipoles. The whole volume is divided by 3 sub-volumes, 

see Figure. 1a. A carrier allowed to walk inside the first (the inner) sub volume; energies are 

calculated also for any state of the second sub volume, which is necessary to evaluate probabilities of 

hopping at the outer boundary of the first sub volume correctly. The 3
th
 (rather large) sub volume is 

necessary, in order to provide correct (isotropic) energy distribution of energies of any state inside the 

1
st
 and 2

nd
 sub-volumes. 

One can calculate the energy of a carrier, which is initially located in a center of a volume (at the 

“initial” site), as a sum of charge-dipole interaction energies, 
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where 
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p  - the dipole moment,   – dielectric constant of the medium; , ,i j k  - the specified coordinates of 

the cubic lattice sites (arbitrary integers) and 0a  – the cubic lattice constant (distance between the 

nearest lattice points), ,   – angles that define the spatial orientation of the dipoles at lattice sites. 

Dipole orientation in space is defined by the random distribution in space (see Figure. 1a).  

In analogy, one can calculate energy of a carrier in any site of the first and second sub volumes. 

Miller–Abrahams hopping rates from site i  to site j  are presumed [3]: 
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where 
0  is the attempt-to-escape frequency, 1  is the decay length of the localized wave function, 

iE  is the energy of the carrier at the site i , ijr  is the distance between sites i and j . The values 

295T  K, 02 10a  and 3   are used in calculations. Sizes of the sub volumes are the 

following: 0 05 ,8a a  and 015a ( by “size” we mean a half of square side of the volume). If the 

electron appears in the nearest position of the second sub-volume, event is over. The value 015a

seems to be minimal sufficient to provide size-independence of node energies inside the 1
st
 and 2

nd
 sub 

volumes with appropriate accuracy. 

a) b) 

Figureure 1. a) Randomly orientated dipoles in the volume and, as the result, b) Gaussian 

distribution for the energy of the central node. 

In order to fix the energy of the central node, centralE , we choose the interval from 2centralE kT  

to 2centralE kT . If the energy centralE  is beyond this interval , the procedure of random dipoles 

setting starts again, until the energy centralE  falls into the given interval. 

To make sure that the energy of the central node has Gaussian distribution, we plot the distribution of 

energies of the central node for more than 100 000 events (Figure. 1b, E  is given in arbitrary units). 

It is shown that the distribution is well fitted by Gaussian function, and it’s mean-square variation 

corresponds to well- known expression [2]: 
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The correlated character of site energies is demonstrated in Figure. 2, where typical distributions 

of energies of nearest neighbors of an initial (central) nodes are shown for several events. Points with 

coordinates  ,r E  are shown, where r is the distance from the central node to the current node, and

E  is the energy of the current node. As one can see, there are only several states that are deeper than 

the central one. 
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a) b) 

c) d) 

e) f) 

Figureure 2. 2D distribution of a node energy versus distance between this node and the central 

node that shows correlated nature of disorder of the considered system. Parameters are: 

   0 0 0 02 0.05 , 2, 2 , 2.2centralE eV E kT E a bE E      ;  0 03, 2 ,centralE k cT E E   02.2E

 d ; 0 4,E kT     0 02 , 2.2centralE E e fE   . The solid line is the energy of the central node

calculated according to current dipole orientation. 

3. Results and Discussion

The following dependence of mean release time of a carrier from a rather deep initial state on the 

energy of this state, 
iE , should be valid, if transport level concept is applicable: 

   0 exp ,esc i tr it E t E E kT        (5) 

where  1

0 0 0exp 2t a   and the effective transport level 
trE  are constants [1]. 

Figure. 3 shows the results for mean escape time vs initial energy that were obtained earlier in [1] for 

the case of non-correlated disorder, plus brand new results for correlated energetic disorder in dipole 

glass model at various values of the disorder parameter, / kT . One has to conclude that new data 

are in very proximity with the results that were obtained for non-correlated disorder. However, it is 

clear, that stars, representing the result for correlated disorder, are located a little bit higher that the 

results of [1]. So there is the difference, but transport levels for both cases are close enough to each 

other (within the interval kT).   
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Figureure 3. Mean escape time vs initial energy, parametric in disorder parameter, / kT : 

1.414,  2.12,  2.83  , 4.0  (it increases as shown by arrow),  295T K , providing uncorrelated disorder 

[1]. Stars are brand new results for correlated disorder for / kT  1.414,  2.12,  2.83 . Time and 

initial energy are normalized by the values 1

0 0 (2 )t exp a  , and 2 , respectively. Horizontal line 

shows the level 0esct t , and vertical dashed lines shows the values of cE . 

4. Conclusion

Following the work [3], one can conclude, that the concept of effective transport level is applicable 

to the organic materials with correlated disorder. Moreover, both the absolute values and dependence 

of this energy level on the disorder parameter, / kT , is very similar to the same in the case of 

uncorrelated disorder [1].   
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