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Abstract.  This work addresses the evolution of radius distribution function in self-catalyzed 

vapor-liquid-solid growth of GaAs nanowires from Ga droplets. Different growth regimes are 

analyzed depending on the V/III flux ratio. In particular, we find a very unusual self-

equilibration regime in which the radius distribution narrows up to a certain stationary radius 

regardless of the initial size distribution of Ga droplets. This requires that the arsenic vapor 

flux is larger than the gallium one and that the V/III influx imbalance is compensated by a 

diffusion flux of gallium adatoms. Approximate analytical solution is compared to the 

numerical radius distribution obtained by solving the corresponding Fokker-Planck equation by 

the implicit difference scheme. 

1.  Introduction 

Theoretical analysis of self-catalyzed growth of III-V semiconductor nanowires (NWs) fabricated via 

the vapor-liquid-solid (VLS) method attracts great interest. Due to the absence of unwanted gold 

contamination, the possibility of integration of NW-based photonic devices on Si and pure zincblende 

crystal structure, such NWs look very promising for applications. The theoretically predicted [1,2] and 

experimentally confirmed [3] focusing effect whereby the NW radius converges to a certain stationary 

one in the course of growth is another important feature of Ga-catalyzed GaAs NWs which enables 

fabrication of size-uniform NW arrays and may play the key role for their optoelectronic applications. 

As it is known, the atomic flux of group III elements to the droplet consists of the direct atomic flux, 

proportional to the droplet surface area, and the diffusion from the NW sidewalls, proportional to the 

droplet base perimeter. Therefore, the regular growth rate of the NW radius in these conditions can be 

represented as rBAdtdr //  . Here, r  is the dimensionless NW radius at time t , A  and B  are the 

kinetic constants. Depending on the V/III flux ratio, the value of A  can be either positive or negative. 

In the former case, the radial growth is infinite, while in the latter case the radius tends to the 

stationary value ABrs   regardless of the initial condition.  However, accounting for the hyperbolic 

tangent dependence of the diffusion on the NW length [4], the relationship between the NW radius and 

the growth time becomes more complicated. Radius dependences at different initial radii of individual 

NWs are presented in Figure 1. 
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Figure 1. The time-dependent NW radius at different initial radii with (solid curves) and without 

(dotted curves) accounting for the hyperbolic tangent dependence of the diffusion on the NW length in 

the self-equilibration regime for 1A  and 3.83B . 
 

In the simplified model of Ref. [3] for the radius distribution function, the second derivative in the 

Fokker-Planck equation was not taken into account. This approximation neglects the role of kinetic 

fluctuations that should result in the Poissonian broadening of the radius distribution in the infinite 

growth regime. From an analysis of the radius-time dependence of individual NW, obviously, that in 

case of self-equilibration growth the radius distribution has to narrow up and tend to the delta function 

despite the initial droplet size distribution. The purpose of this paper is to describe theoretically the 

evolution of the NW size distribution. 

2.  Time evolution of the size spectrum 

The After the completion of the nucleation phase, the evolution of the discrete length l  or radius r  

distribution, corresponding to the nuclei growth, is described by the Fokker-Plank type kinetic 

equation in partial derivatives of the second order [5,6]:  
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Here, ),( lrs   is nanowire size, 


sW and 


sW  are the attachment and detachment rates. The first 

derivative describes the drift, whereas the second one describes the pure diffusion effect. 

Under steady-state and As limited conditions and neglecting the surface diffusion of group V 

species, the NW elongation rate equals 
5  dtdlWW ll
, where 5  is the direct atomic flux 

of group V elements. Then the evolution of the length distribution  tf l  is given by the Poisson 

distribution and for large values of l  tends to a continuous Gaussian distribution with the dispersion 

l2 , where tl 5  is the mean nanowire length [7]:  
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Now consider the case, when dtdrWWWW rrrr   . Using the continuum approximation, 

that is applicable at 1r , the evolution of the radius distribution ),( trf  writes: 
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Since the length-time dependence is linear, the radial growth rate can be expressed through the mean 

NW length rbalddr //   with constants  
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Here,   2

53 sin1  are the geometrical functions, kkV  and Lkkk hVv /  are the direct 

atomic fluxes ( 5,3k ) in units of nm/s and ML/s, respectively, )(f  is the geometrical function 

that reflects the relationship between the droplet volume and the contact angle  , 3  is the incident 

angle of the Ga beam, 35  is the volume of a (III,V) pair in the solid, l  is the group III atomic 

volume in the liquid state, Lh  is the monolayer thickness, 3  is the diffusion length of the group III 

adatoms on the NW sidewalls. It can clearly be seen that the radius self-equilibration effect takes place 

at 35 vv  . 

The continuum second order equation (3) has a simple form in terms of the new distribution defined 

by   ),(),( trfddrtg    with the invariant size  according to 1ldd : 
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The invariant size is obtained by integration of the differential equation   1
 rbadrd  with the 

boundary condition 0)0( r : 

                                                                barabar  1ln2                                                (7) 

The solution for the Green function ),(0 lg   to the equation (5) describing the evolution of the 

radius distribution from the point source )()0,(  lg , can be approximated as the Gaussian: 

                                                     
 

 
  












 


l

l

l
lg








2
exp

2

1
,

2

0                                    (8) 

Now we introduce the most representative invariant size *r  defined by 
** 1 rblddr   with 

0)0(* lr , what corresponds to the maximum of the size distribution relating the delta-like initial 

condition. The value of the most representative invariant size is obtained as the solution to 

transcendent equation 
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The variance can be obtained by integration of the differential equation 
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The convolution of the Green function ),(0 lg   with the initial conditions in the terms of invariant 

size with the main radius 0r  and the variance 0  gives the general solution to the kinetic equation (3): 
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Figure 2 shows the evolution of the radius distribution in the self-equilibration regime in the two cases 

where the initial mean radius srr 0  and srr 0 , for 09.0a  and 5.7b  . As expected, the 

radius distribution decays at srr 0  and grows at srr 0 . Most importantly, the variance of both 

distributions gradually decreases so that they acquire a delta-like shape when approaching sr . For 

comparison, the numerical solutions of the Fokker-Planck equation by the implicit difference scheme 

are also shown. The discrepancy between the numerical and analytical solutions is explained by the 

large step used in numerical calculations and a specific form of the initial condition implied in 

analytical solution. However, both results match quite well in this case. The analytical scheme does 

not allow one to consider situations with srr 0 .  The numerical solution of the Fokker-Planck 

equation by the explicit difference scheme in this case is given in Figure 3. The evolution of the 

distribution function in the regime of infinite growth is given in Figure 4. It is seen that the distribution 

spreads up as the NWs grow due to the known effect of Poissonian broadening. 

 
Figure 2. The radius distributions in self-equilibration regime. The solid curves are the analytical 

solution, the dotted curves are the numerical solution, the dashdotted curves are the initial distributions 

in Gaussian forms with the expected value 0r  and the variance 
2r . 
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Figure 3. The numerical calculation for the radius distribution for 850 r . 

 

Figure 4. The radius distribution in infinite growth for 650 r , 162 r , 005.0a  and 60b . 

 

The Fokker-Planck equation with different kinetic coefficients takes the form 
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Here, constants a  and b  are the same as in equation (4) and 
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Analytical solution is the same as in equations (11) and (12) with the variance )( *rc  
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The analytical radius distribution and numerical solution are presented in Figure 5. There we can see 

that under the analytical solution the distribution function does not pass through the stationary radius 

(what associates with the transition to the invariant size), whereas under the numerical solution it does.  

Saint Petersburg OPEN 2016 IOP Publishing
Journal of Physics: Conference Series 741 (2016) 012033 doi:10.1088/1742-6596/741/1/012033

5



 

 

 

 

 

 

From a physical point of view, due to fluctuations, the distribution function moves to srr   region 

under approaching of the distribution function to the stationary radius, but the function does not have 

time to return to the stationary value, because of slow growth (which is determined by the first 

derivative) in srr   region, and grow further to achieve a stationary form. The form of the distribution 

function obtained by the numerical method is supported by the experimental data, however, it should 

be noted that the experimental distribution function is slightly narrower. In the 

dtdrWWWW rrrr    model both fluctuations and drift speed decrease under approaching of 

the main radius to the stationary value, what explains the form of the distribution function obtained as 

a result of the numerical calculations. 

 
Figure 5. The radius distributions in self-equilibration regime for 09.0a , 5.7b  and 116.0c . 

The solid curves are the analytical solution, given by equations (11), (12) and (15), the dotted curves 

are the numerical solution of equation (14), the dashdotted curve is the initial distributions in Gaussian 

form with 650 r  and the variance 162 r .  

 

In conclusion, we demonstrate that the fluctuation-induced broadening of the size distribution can 

be completely suppressed by appropriate deterministic growth rate that renders the system into the 

self-equilibration regime. If the absence of radial NW growth, the NW top radius will follow that of 

the droplet and the NWs will be either tapered or reverse tapered at the beginning to match the 

stationary radius in the asymptotic stage. Whenever radial growth by a step flow is enabled [8,9], the 

NWs will have a uniform radius from base to top starting from the time moment at which the droplet 

reaches the stationary size. 
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