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Abstract. A steady state (or equilibrium point) of a dynamical system is hyperbolic if the
Jacobian at the steady state has no eigenvalues with zero real parts. In this case, the linearized
system does qualitatively capture the dynamics in a small neighborhood of the hyperbolic steady
state. However, one is often forced to consider non-hyperbolic steady states, for example in the
context of bifurcation theory. A geometric technique to desingularize non-hyperbolic points
is the blow-up method. The classical case of the method is motivated by desingularization
techniques arising in algebraic geometry. The idea is to blow up the steady state to a sphere
or a cylinder. In the blown-up space, one is then often able to gain additional hyperbolicity
at steady states. The method has also turned out to be a key tool to desingularize multiple
time scale dynamical systems with singularities. In this paper, we discuss an explicit example
of the blow-up method where we replace the sphere in the blow-up by hyperbolic space. It is
shown that the calculations work in the hyperbolic space case as for the spherical case. This
approach may be even slightly more convenient if one wants to work with directional charts.
Hence, it is demonstrated that the sphere should be viewed as an auxiliary object in the blow-up
construction. Other smooth manifolds are also natural candidates to be inserted at steady states.
Furthermore, we conjecture several problems where replacing the sphere could be particularly
useful, i.e., in the context of singularities of geometric flows, for avoiding compactification, and
generating ’interior’ steady states.

1. Introduction

Consider an ordinary differential equation (ODE) given by

dz

dt
= z′ = f(z), (1)

where z = z(t) ∈ R
N , N ∈ N, t ∈ R and f : RN → R

N is assumed to be sufficiently smooth.
Suppose z∗ ∈ R

N is a steady state (or equilibrium point) of (1), i.e., f(z∗) = 0. Using a
translation of coordinates, if necessary, we may assume for the following analysis without loss
of generality that z∗ = 0 := (0, 0, . . . , 0) ∈ R

N . The first standard calculation for steady states
is to consider the linearized system in a neighborhood of the steady state

Z ′ = [Df(0)]Z, (2)

where Z ∈ R
N and Df(0) ∈ R

N×N denotes the total derivative of f evaluated at z = 0. It
is also common to refer to Df(0) as the Jacobian matrix or simply the Jacobian. Let λn for
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n ∈ {1, 2, . . . , N} denote the eigenvalues of Df(0). If the eigenvalues have no zero real parts,
Re(λn) 6= 0 for all n, then the steady state z∗ = 0 is called hyperbolic. The Hartman-Grobman
Theorem (see e.g. [22, p.120-121]) implies that in a neighborhood of a hyperbolic steady state,
the flows generated by (1) and (2) are topologically conjugate. For most practical purposes this
implies that we may just use the linear ODE (2) to study the dynamics near z∗ = 0.

However, non-hyperbolic points are unavoidable if we want to analyze bifurcation points
[7, 18]. The linearization approach breaks down and one has to carefully consider the influence
of nonlinear terms. One possible technique that can be very successful in this context is
geometric desingularization; see e.g. [4, p.67-70] for a particular example or [3] for general planar
singularities. We are going to introduce geometric desingularization via the blow-up method in
more detail in Section 2.

The main geometric idea of the method arose in algebraic geometry in the context of
desingularization of algebraic varieties [9, p.29], where one replaces certain singular points by
projective space. The resulting variety either has no singular points anymore or one can try to
repeat the blow-up. Under certain conditions one may indeed reach a complete desingularization
as stated in the celebrated Hironaka Theorem [10, 11].

In the context of ODEs, the classical strategy involves using a spherical blow-up as one works
in real space and not in the context of (complex) projective space. The key difference to the
algebraic geometry blow-up is that one also has to keep track of the dynamics on the blown-up
space. There has been a tremendous amount of work on using the blow-up technique for planar
ODEs [3, 4, 2], canard solutions [6, 12, 14, 24], traveling wave problems [20, 5] and a large variety
of other problems in the theory of multiple time scale dynamical systems [19, 8, 13, 15, 17]. For
fast-slow dynamical systems of the form

x′ = f1(x, y, ε),
y′ = εg(x, y, ε),

(3)

with 0 < ε ≪ 1 and (x, y) ∈ R
m+n, it is crucial to observe [6] that the blow-up is frequently

very helpful. Indeed, consider the formal limit ε→ 0 in (3) which yields

x′ = f1(x, y, 0),
y′ = 0.

(4)

Linearizing around a steady state, say (x∗, y∗) = (0, 0) =: 0 of the fast subsystem (4) means
computing the total derivative matrix Dxf(0) ∈ R

m×m, which is generically not hyperbolic due
to the presence of the free parameters (or frozen slow variables) y ∈ R

n. Therefore, one has to
deal with non-hyperbolic points for fast-slow systems [6, 16] and re-write them in the form

x′ = f1(x, y, ε),
y′ = εg(x, y, ε),
ε′ = 0.

(5)

Setting z = (x, y, ε), f2(x, y, ε) = εg(x, y, ε), f3(x, y, ε) = 0, and f := (f1, f2, f3)
⊤ yields precisely

a problem of the form (1) with a non-hyperbolic point at the origin.

Using a spherical, or cylindrical, space is currently the standard choice to desingularize non-
hyperbolic steady states of ODEs. However, there seems to be no apparent reason why other
manifolds could not function equally well, or even better. In this paper, we investigate this idea
in more detail and consider a simple example to illustrate the main idea. The spherical case is
discussed in Section 2, which is also a fully self-contained introduction to the blow-up method.
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In Section 3 we replace the sphere by hyperbolic space, i.e. by using a manifold with constant
negative curvature. We emphasize that the word ‘hyperbolic’ is then used in two distinct ways:
(1) for the dynamical type of a steady state and (2) for a smooth manifold which replaces the
sphere in the blown-up space. The results in Section 3 confirm the intuition that using a spherical
blown-up space is not crucial and hyperbolic space works also for geometric desingularization
in the example. This indicates that one should be open-minded about trying to use different
manifolds for geometric desingularization. Further directions for this new approach are sketched
in Section 4. Three areas are identified, where using manifolds different from spheres could be
beneficial.

2. Spherical Blow-Up

In this section a basic test example for the blow-up method is reviewed from [4] and more explicit
calculations for this example are provided. The spherical blow-up is constructed in this context,
which leads to a geometric desingularization of the problem.

Consider the following planar ODE [4] for z(t) = (x(t), y(t)) ∈ R
2

dx
dt = x′ = ax2 − 2xy =: f1(x, y),
dy
dt = y′ = y2 − axy =: f2(x, y),

(6)

where a > 0 is a positive parameter, we abbreviate (x, y) = (x(t), y(t)) and we denote the vector
field by f := (f1, f2)

⊤, where (·)⊤ denotes the transpose.

Remark: We note that we are not interested here in trying to solve the problem (6) directly but to

use it to illustrate how the blow-up method can resolve the fine-scale geometry of the problem.

We may view the vector field f as a smooth section into the tangent bundle f : R2 → TR2.
If p ∈ R

2 is a given point, then we shall usually employ the natural identification of the tangent
space TpR

2 ∼= R
2.

Observe that (x, y) = (0, 0) =: 0 is a steady state, i.e. f1(0) = 0 = f2(0), for (6). It is
straightforward to compute the linearized system Z = (X,Y ) ∈ R

2 at the origin

(

X ′

Y ′

)

= [Df(0)]

(

X
Y

)

=

(

2ax− 2y −2x
−ay 2y − ax

)
∣

∣

∣

∣

{x=0=y}

(

X
Y

)

=

(

0 0
0 0

)(

X
Y

)

,

where we shall always employ capital variables Z = (X,Y ) ∈ R
2 to emphasize when we work

with a linearized problem. We see that the origin is a non-hyperbolic steady state since Df(0)
has two zero eigenvalues; see also Figure 1(a). Hence, further analysis is required and the
blow-up method provides one approach to understand the dynamics.

For planar vector fields, the classical approach of the blow-up method is to use a
transformation which replaces the point p with a (unit) circle

S1 = {(x, y) ∈ R
2 : x2 + y2 = 1} = {(x, y) ∈ R

2 : x = cos θ, y = sin θ, θ ∈ [0, 2π)}.

In higher-dimensional cases, one usually uses spheres or cylinders. Formally, we fix r0 > 0,
consider the interval I := [0, r0] and define the manifold

B := S1 × I. (7)

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012008 doi:10.1088/1742-6596/727/1/012008

3



(a) (b) (c)

Φ

f f̂ f̄ = 1

r f̂

Figure 1. Sketch of the main steps of the (spherical) blow-up method for the example (6).
(a) Original vector field f with non-hyperbolic steady state (gray) at the origin. (b) Blown-

up vector field f̂ on B with a full circle of steady states (gray) given by S1 × {r = 0}. (c)
Desingularized blown-up vector field f̄ with precisely six hyperbolic saddle steady states (gray).
The small arrows on S1×{r = 0} indicate the qualitative part of the flow which is different from

f̂ . Observe that the flow directions are compatible with the phase portrait for S1 × {r > 0}.

Sometimes other choices for I are convenient such as I = R, I = [−r0, r0] or I = [0,∞) but in
our context I := [0, r0] will suffice. A spherical blow-up transformation is given by

Φ : B → R
2,

where the map Φ will be defined algebraically below. We already note that if Φ is differentiable
then the push-forward Φ∗ : TB → R

2 induces a vector field f̂ on the blown-up space B if we
require the condition

Φ∗

(

f̂
)

= f.

One possibility to define Φ algebraically is to use the weighted polar blow-up. Let (θ, r) ∈
S1 × [0, r0] be coordinates for B and define

Φ(θ, r) = (rα cos θ, rβ sin θ) = (x, y),

where α, β ∈ R are the weights to be chosen below and θ ∈ [0, 2π). Observe that Φ is a
diffeomorphism outside of the circle S1 × {r = 0}, which corresponds to the steady state
p = (0, 0). Hence, the polar blow-up transformation indeed inserts a circle at the non-hyperbolic
point and topologically conjugates the dynamics between

R
2 − {(0, 0)} and B −

[

S1 × {r = 0}
]

.

To determine good weights α and β one may use quasi-homogeneity of the vector field; recall
that f is quasi-homogeneous of type (α, β) and degree k + 1 if

f(rαx, rβy) = (rα+kf1(x, y), r
β+kf2(x, y))

⊤. (8)

Substituting the vector field (6) into (8) yields

r2αax2 − rα+β2xy = rα+k(ax2 − 2xy),
r2βy2 − rα+βaxy = rβ+k(y2 − axy).

(9)

Therefore, the vector field f is quasi-homogeneous of type (α, β) = (1, 1) and degree 2 (with
k = 1). Then one chooses the blow-up weights as the type of the quasi-homogeneous vector field
so that for (6) we just have a polar coordinate change

Φ(θ, r) = (r cos θ, r sin θ) = (x, y).

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012008 doi:10.1088/1742-6596/727/1/012008

4



Lemma 2.1. The vector field f̂ in polar coordinates is given by

θ′ = r
(

3 cos θ sin2 θ − 2a sin θ cos2 θ
)

,
r′ = r2(a cos θ − 2 sin θ − 2a cos θ sin2 θ + 3 sin3 θ).

(10)

Proof. One possibility is to note that f̂(θ, r) = (DΦ)−1f(Φ(θ, r)) and calculate. Alternatively,
one may proceed slightly more directly

ar2 cos2 θ − 2r cos θ sin θ = x′ = r′ cos θ − rθ′ sin θ,
r2 sin2 θ − ar2 sin θ cos θ = y′ = r′ sin θ + rθ′ cos θ,

(11)

and then solve for θ′ and r′ in (11).

The ODE (10) has an entire circle of steady states given by S1 × {r = 0}; see Figure 1(b).

However, it is possible to desingularize the vector field f̂ by division by 1/r, i.e. we define

f̄ :=
1

r
f̂ .

The division by 1/r does not change the qualitative dynamics on the set S1 × {r > 0} up to a
time rescaling [1, Sec.1.4.1]. However, the 1/r scaling does drastically change the dynamics on
the circle S1 × {r = 0}. The desingularized vector field f̄ is given by

θ′ = 3 cos θ sin2 θ − 2a sin θ cos2 θ,
r′ = r(a cos θ − 2 sin θ − 2a cos θ sin2 θ + 3 sin3 θ).

(12)

Having computed (12), the dynamics follows by direct calculation of the steady states and
linearization.

Proposition 2.2. For a > 0 fixed, There are six steady states for (12) on S1 × {r = 0}. Four
are given by

θ = 0,
π

2
, π,

3π

2

while the remaining two are defined by the condition tan θ = 2

3
a. The six steady states are

hyperbolic saddle points as shown in Figure 1(c).

Although the calculations using polar coordinates are easy for our example problem, they
become quickly very involved for other problems [6]. In particular, consider the situation when
the blow-up has to be used iteratively when new steady states on the sphere associated to
{r = 0} are also non-hyperbolic.

It is more convenient to use charts for B in combination with a so-called weighted directional
blow-up. Introduce coordinates on B given by (x̄, ȳ, r̄) ∈ S1 × [0, r0] with x̄2 + ȳ2 = 1. Then
define the weighted directional blow-up map by

Ψ : B → R
2, Ψ(x̄, ȳ, r̄) = (r̄x̄, r̄ȳ). (13)

So how should we define charts κi : B → R
2 to make the calculations as simple as possible? One

approach is to require that the induced local coordinate changes

ψi = Ψ ◦ κ−1

i
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are easy to compute and the vector fields Dψ−1
i ◦ f ◦ ψ have a tractable algebraic form. Let

xi, yi ∈ R, ri ∈ [0, r0] and let (r1, y1), (r2, x2) be coordinates on R
2. One possibility to design

the charts is to consider (13) and try to require

ψ1(r1, y1) = (r1, r1y1) and ψ2(r2, x2) = (r2x2, r2). (14)

The following diagram illustrates the main aspects of the weighted directional blow-up:

B = S1 × [0, r0]

κ2
rr❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡

κ1
vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

Ψ

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

(r2, x2) ∈ R
2

κ21
// (r1, y1) ∈ R

2κ12
oo

ψ1
// (x, y) ∈ R

2,

where κ12 and κ21 denote the transition maps between the two charts κ1 and κ2. If (14) holds
then this leads to

κ1(x̄, ȳ, r̄) = ψ−1
1 ◦Ψ(x̄, ȳ, r̄) = ψ−1

1 (r̄x̄, r̄ȳ) = (r̄x̄, r̄ȳ/(r̄x̄)) = (r̄x̄, ȳ/x̄),
κ2(x̄, ȳ, r̄) = ψ−1

2 ◦Ψ(x̄, ȳ, r̄) = ψ−1
2 (r̄x̄, r̄ȳ) = (r̄x̄/(r̄ȳ), r̄ȳ) = (x̄/ȳ, r̄ȳ).

(15)

Hence we may use (15) as definitions of the charts and obtain that the corresponding coordinate
changes on R

2 are given by (14).

Lemma 2.3. The vector fields using the charts κ1,2 are given by

{

r′1 = r21(a− 2y1),
y′1 = r1y1(3y1 − 2a),

{

r′2 = r22(1− ax2),
x′2 = r2x2(2ar2 − 3).

(16)

Proof. As before, we may formally carry out the coordinate change. Or one may use direct
calculations, for example, we have

r′2 = y′ = r22 − ar22x2, x′ = r′2x2 + r2x
′
2 = ar22x

2
1 − 2r22x2.

From these results, the vector field in (r2, x2)-coordinates easily follows. The calculation for the
κ1-chart is similar.

The ODEs (16) are still polynomial vector fields and algebraically a lot simpler to treat in
comparison to long expressions using trigonometric functions. As for the polar case, we may
again desingularize the problem using a division by 1/ri. For the first chart this yields

r′1 = r1(a− 2y1),
y′1 = y1(3y1 − 2a).

(17)

We have that (17) is defined in (r1, y1) ∈ [0, r0] × R. We may consider this domain as
corresponding to covering the right-half plane of B ⊂ R

2 outside of the open half-disc
{x > 0, x2 + y2 < 1}; see Figure 2.

There are two steady states for (17) given by

(r1, y1) = (0, 0), (r1, y1) =

(

0,
2

3
a

)

which correspond to the steady states with angles θ = 0 and the smallest positive zero of
tan θ = 2

3
a. In the form (17) it is easier to check the eigenvalues of the linearized system

(

R′
1

Y ′
1

)

=

(

a− 2y1 −2r1
0 6y1 − 3a

)(

R1

Y1

)
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(a) (b)

κ1

r1

y1

Figure 2. Sketch of the coordinate chart κ1 associated to the x-directional blow-up. (a) Blown-
up space B with phase portrait (black). (b) Directional coordinates (r1, y1) ∈ R

2; the blue region
corresponds to the blue region in (a) using the chart map κ1, respectively its inverse κ−1

1 . Note
that the half-circle from (a) is mapped to the vertical y1-axis.

to conclude that the two steady states are hyperbolic saddle points. The calculations for the
second desingularized system

r′2 = r2(1− ax2),
x′2 = x2(2ar2 − 3),

(18)

are similar and we also find two saddle points. The system (17) covers the outside of the open
half-disc {y > 0, x2+y2 < 1} similar to the case shown in Figure 2 just for the upper half-plane.
We can define two more charts, which also cover the left-half plane and the lower half-plane. If
we define

κ3(x̄, ȳ, r̄) = (−r̄x̄, ȳ/x̄),
κ4(x̄, ȳ, r̄) = (x̄/ȳ,−r̄ȳ),

(19)

then the local coordinate changes are given by

ψ3(r3, y3) = (−r3, r3y3) and ψ4(r4, x4) = (r4x4,−r4). (20)

With the four charts, one checks that there are six hyperbolic saddle points on B×{r = 0} and
one determines the direction of the flow as shown in Figure 1(c).

As a remaining question we consider the relation between the directional and polar blow-
up maps. For example, if we would like to change from polar coordinates (θ, r) to Euclidean
coordinates (r1, y1), we want the following diagram to commute:

B = S1 × [0, r0]

α1
vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

Φ

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

(r1, y1) ∈ R
2

ψ1

// (x, y) ∈ R
2.

In particular, this yields the requirement

Φ(θ, r) = (r cos θ, r sin θ) = (x, y) = (r1, r1y1) = ψ1(r1, y1).

Therefore, we must have r1 = r cos θ which implies

r1y1 = y1r cos θ = r sin θ ⇒ y1 = tan θ.
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The coordinate change
α1(θ, r) = (r cos θ, tan θ) = (r1, y1) (21)

is not well-defined when θ = π/2, 3π/2 but it is a diffeomorphism otherwise. Note that this
implies the polar blow-up is indeed equivalent to the directional blow-up in the x-direction expect
on the vertical y1-axis. This is geometrically clear as we cannot map the circle diffeomorphically,
or even homeomorphically, onto the y1-axis. In some sense, this fact leads one to the viewpoint
that using a spherical blow-up, if one eventually wants to calculate in directional coordinates
anyway, is not the only choice for the blown-up space. In fact, there may be manifolds that
work more naturally with directional coordinate charts.

3. Hyperbolic Space Blow-Up

In this section we address the question whether it is possible to consider a blown-up space
other than the sphere to analyze the dynamics. As we shall show below, the answer to this
question is positive. The second question is whether other blow-up spaces are more convenient
from a practical and/or theoretical perspective. Again, this question has at least a ‘non-
negative’ answer, i.e. we shall show that for our test example, the calculation for hyperbolic
space work equally well; in fact, it may be even more convenient to use hyperbolic space if we
have distinguished directions and want to work in charts. Furthermore, having the additional
freedom to pick a manifold adapted to the problem could be beneficial as outlined in Section 4.

Instead of the sphere, we shall now work with hyperbolic space [23] via the hyperboloid model
and define

Hx := {(x, y) ∈ R
2 : x2 − y2 = 1}, Hy := {(x, y) ∈ R

2 : y2 − x2 = 1}.

Furthermore, we define the associated blow-up spaces

Bx := Hx × [0, ρ0], By := Hy × [0, ρ0]

for some fixed ρ0 > 0; note that ρ0 plays the same role as r0 for the spherical case. We start
with the blow-up using just the space Bx. Note that we can again use a (weighted) blow-up
similar to the polar coordinate map Φ if we recall that cosh2(ϕ)− sinh2(ϕ) = 1. Indeed, we may
just define the blow-up map by

Ξ : Bx → R
2, Ξ(ϕ, ρ) = (ρ coshϕ, ρ sinhϕ)

and apply it to our main example (6). As for the spherical polar blow-up, the map Ξ induces a

vector field, which we denote by ĥ, on Bx by the requirement

Ξ∗

(

ĥ
)

= f.

Lemma 3.1. The vector field ĥ is given by

ϕ′ = ρ(3 sinh2 ϕ coshϕ− 2a cosh2 ϕ sinhϕ),
ρ′ = ρ2(a coshϕ− 2 sinhϕ− 3 sinh3 ϕ− 2a coshϕ sinh2 ϕ).

(22)

The proof of Lemma 3.1 follows the same approach as Lemma 2.1. As before, we may
desingularize the vector field and consider

h̄ :=
1

ρ
ĥ.
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Then we look for steady states on Hx × {ρ = 0} and we have to solve

sinh2 ϕ =
2

3
a coshϕ sinhϕ

since coshϕ ≥ 1.

Proposition 3.2. For the desingularized vector field h̄, there is one steady state at (ϕ, ρ) = (0, 0)
and a second one at (ϕ, ρ) =

(

0, tanh
(

2

3
a
))

. Both points are hyperbolic saddles.

The result is expected from the previous computations. Next, we observe that the geometry
of the problem for the hyperbolic blow-up space Hx is similar to the directional blow-up in the
x-direction; see Figure 3.

(a)
(b)

ν1

r1

y1ỹ

x̃

Figure 3. Sketch of the coordinate chart ν1 associated to the x-directional blow-up. (a) Blown-
up space Bx = Hx× [0, ρ) with phase portrait (black). (b) Directional coordinates (r1, y1) ∈ R

2;
the blue region corresponds to the blue region in (a) using the chart map ν1, respectively its
inverse ν−1

1 . Note that the curve {x̃2 − ỹ2 = 1} × {ρ = 0} from (a) is mapped to the vertical
y1-axis.

Next, we check how to define the directional blow-ups based upon Bx. Let (x̃, ỹ, ρ̃) be
coordinates on Bx with x̃2 − ỹ2 = 1 and ρ̃ ∈ [0, ρ0]. Define the blow-map

Γ(x̃, ỹ, ρ̃) = (ρ̃x̃, ρ̃ỹ).

Let νi : Bx → R
2 be coordinate charts. As before, we want to construct the charts such that the

local coordinate changes are given, as for the spherical case in (14), by

γ1(ρ1, y1) = (ρ1, ρ1y1) and γ2(ρ2, x2) = (ρ2x2, ρ2), (23)

where γi = Γ ◦ ν−1
i . In particular, the following diagram should commute

Bx = Hx × [0, ρ0]

ν2
rr❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡

ν1
vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

Γ

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

(ρ2, x2) ∈ R
2

ν21
// (ρ1, y1) ∈ R

2ν12
oo

γ1
// (x, y) ∈ R

2,
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where ν12, ν21 denote the transition maps. The conditions (23) yield

ν1(x̃, ỹ, ρ̃) = γ−1
1 ◦ Γ(x̃, ỹ, ρ̃) = γ−1

1 (ρ̃x̃, ρ̃ỹ) = (ρ̃x̃, ρ̃ỹ/(ρ̃x̃)) = (ρ̃x̃, ỹ/x̃),
ν2(x̃, ỹ, ρ̃) = γ−1

2 ◦ Γ(x̃, ỹ, ρ̃) = γ−1
2 (ρ̃x̃, ρ̃ỹ) = (r̃x̃/(ρ̃ỹ), ρ̃ỹ) = (x̃/ỹ, ρ̃ỹ),

(24)

so the calculations are almost exactly the same as for the spherical case. However, there are some
subtle differences when we consider the relation between the directional and hyperbolic polar
blow-up maps. If we would like to change from the coordinates (ϕ, ρ) to Euclidean coordinates
(ρ1, y1) we get the requirement

Γ(ϕ, ρ) = (ρ coshϕ, ρ sinhϕ) = (x, y) = (ρ1, ρ1y1) = γ1(ρ1, y1).

Therefore, it follows that ρ1 = ρ cosh θ which implies

ρ1y1 = y1ρ coshϕ = ρ sinhϕ ⇒ y1 = tanhϕ.

The coordinate change β1 : R
2 → R

2 given by

β1(ϕ, ρ) = (ρ coshϕ, tanhϕ) = (ρ1, y1) (25)

is analytic and well-defined everywhere. Geometrically, this is expected since we can easily map
the domain

{x̃ : x̃ > 0, x̃2 − ỹ2 = 1} × [0, ρ0]

diffeomorphically onto a rectangular strip of the form {(x, y) : x ∈ [0, ρ0]}; see Figure 3. For the
second chart we get

Γ(ϕ, ρ) = (ρ coshϕ, ρ sinhϕ) = (x, y) = (ρ2x2, ρ2) = γ2(ρ2, x2).

Therefore, it follows that ρ2 = ρ sinh θ which implies

ρ2x2 = x2ρ sinhϕ = ρ coshϕ ⇒ x2 =
1

tanhϕ
.

The coordinate change β2 : R
2 → R

2 given by

β2(ϕ, ρ) =

(

ρ sinhϕ,
1

tanhϕ

)

= (ρ2, x2) (26)

is is not defined at ϕ = 0 as tanh(0) = 0. Again, this is expected from the geometry as shown
in Figure 3.

4. Conclusion and Outlook

In Section 4.1 a small summary is provided based upon the calculations of the hyperbolic space
desingularization example. In Sections 4.2-4.4, three potential applications for blow-up without
spheres are suggested, which provide additional motivation for the overall construction proposed
here.
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4.1. Classical Calculations in Different Coordinates
We may conclude from the example in Section 3 that the space Bx, which is built upon Hx,
basically yields immediately a directional blow-up in the x-direction up to the analytic coordinate
change β1. Similarly, one may show that using By corresponds, up to an analytic coordinate
change, to a y-direction blow-up. As for the spherical case, we may define charts that also cover
the negative half-planes.

In summary, the example demonstrates that the classical choice of a spherical blow-up in R
N

with SN−1 × I for some interval I ⊆ R is certainly not the only option. In particular, if we
already know a certain direction for z ∈ R

N where we do not need the directional blow-up, say
z1, then hyperbolic space Hz1 is one good choice as it corresponds via an analytic coordinate
change to the respective directional blow-ups. Of course, the intrinsic dynamics of the problem
does not change, regardless of the blow-up transformation considered. However, as has been
shown in the case of the polar and directional blow-ups, sometimes a certain coordinate system
is preferable. Therefore, hyperbolic space, as well as other suitable manifolds, could be viable
alternatives to classical methods.

4.2. Geometric Flows and Singularities
Here we briefly outline one viewpoint that motivated the investigation of hyperbolic space blow-
up. The basic ODE (1) we started with, as well as the example (6), are vector fields on R

N given
by f : RN → TRN . However, what happens if we replace the base manifold R

N by some more
general smooth manifold M? The ODEs under study defined by a vector field F : M → TM
could still have non-hyperbolic points. A natural example is to start considering ODEs arising
in differential geometry. Consider the hyperbolic plane H now viewed in the Poincaré upper
half-plane model

H = {z = x+ iy ∈ C : y > 0}, ds =

√

(dx)2 + (dy)2

y
,

where ds is the arclength element [23]. In particular, consider a curve γ(t) = (x(t), y(t)) ∈ H

between two points p1, p2 ∈ H with γ(0) = p0 and γ(1) = p1 and define the Lagrangian energy
functional

L[γ] :=
1

2

∫

1

0

(x′)2 + (y′)2

y2
dt. (27)

Then it is classical to minimize (27) to determine the differential equations for the geodesics on
H. The associated Euler-Lagrange equations are given by

q′ = f(q), f(q) :=

(

u, v,
2uv

y
,
v2 − u2

y

)⊤

with coordinates q = (x, y, u, v) ∈ TH2 =: TM. As discussed previously for desingularization of
dividing factors it seems natural to consider F := yf so that

q′ = F (q), F (q) :=
(

uy, vy, 2uv, v2 − u2
)⊤

with a suitable time re-parametrization understood. The vector field F (q) has a codimension
two submanifold of equilibria {u = 0 = v}. If we formally linearize DqF (x, y, 0, 0) ∈ R

4×4

has a quadruple zero eigenvalue and there is no (dynamical) hyperbolicity of the submanifold
{u = 0 = v}. Of course, one could then ask whether the blow-up method can help to
desingularize the problem and it seems natural to conjecture that spherical blow-up spaces
may not be adequate. Indeed, the entire problem is formulated under the assumption that we
work with a hyperbolic metric not with a spherical one. For other geometric flows the situation
could be similar since (dynamically) non-hyperbolic points or submanifolds can always appear
and we leave this direction as an open problem for future research.
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4.3. Point Contraction and Compactness
As outlined in the introduction, a typical situation for the blow-up occurs in the context of
fast-slow systems

x′ = f1(x, y, ε),
y′ = εg(x, y, ε),
ε′ = 0.

(28)

The lowest-dimensional non-trivial case occurs when z := (x, y, ε) ∈ R
3. Setting f2(x, y, ε) =

εg(x, y, ε), f3(x, y, ε) = 0, and f := (f1, f2, f3)
⊤ leads to

z′ = f(z), z ∈ R
3 (29)

with a non-hyperbolic steady state at z = 0 under the assumption that a non-hyperbolic fast
subsystem steady state at the origin exists. Inserting a two-sphere S2 via a blow-up

Φ : S2 × [0, r0] → R
3 (30)

means that all new steady states on S2 × {0} can now be analyzed locally. A potential
disadvantage is that we now treat all directions of the fast-slow system equally and all orbits
on the sphere are compact. To illustrate this problem formally, let us consider the transcritical
singularity of the form

x′ = x(x− y) + κε,
y′ = ε,

(31)

where κ ∈ R is a parameter. It is easy to check that (x, y) = (0, 0) is a non-hyperbolic steady
state of the fast subsystem. At this transcritical singularity it is well-understood (see e.g. [13,
Thm. 2.1]) that depending upon κ it is possible that trajectories starting sufficiently close to
the attracting critical manifold Ca−0 := {(x, y) ∈ R

2 : x = 0, y < 0} can jump near the origin
towards large negative values of x, the so-called jump case. On the other hand, it is also possible
for different values of κ that trajectories stay close to Cr0 := {(x, y) ∈ R

2 : x = 0, y > 0} (the
canard case), or that trajectories stay close to the attracting critical manifold Ca+0 := {(x, y) ∈
R
2 : x = y, y > 0} (the exchange-of-stability case). In those last two cases the motion is slow

and bounded on all time scales as ε → 0. However, for the jump case, the trajectories become
unbounded in the singular limit ε → 0 on the slow time scale. So it seems quite plausible that
the x-direction is special in this context as the jumps occur almost parallel to the x-axis. Hence,
it could be viewed as more natural to try to represent this fact in the blow-up construction and
work with a space such as the hyperboloid

Hx = {(x, y, ε) ∈ R
3 : y2 + ε2 − x2 = 1},

or another manifold, which has a distinguished direction. Of course, for the transcritical
singularity, this is not necessary as demonstrated in [13]. However, it looks unnecessary to
compactify a direction along which one wants to observe unbounded orbits while using a compact
blown-up space seems more natural if we want to focus on bounded orbits.

4.4. Tori and Interior Steady States
To illustrate another potential advantage of different manifolds we continue with the fast-
slow systems case (28)-(29). Frequently the main problem is to extend a suitable invariant
submanifold of phase space near the blown-up sphere [13, 6] from one part of phase space to
another part. In this context, a technically challenging problem is that this may involve an ODE
without steady states. For example, consider the truncated fold point normal form

x′ = y − x2,
y′ = ε.

(32)
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After a suitable blow-up [13], one obtains the system

x̃′ = ỹ − x̃2,
ỹ′ = 1,

(33)

where (x̃, ỹ) ∈ R
2 are the coordinates in the so-called classical (or re-scaling) chart. Indeed, one

just derives (33) from (32) by applying the scaling

x = ε1/3x̃, y = ε2/3ỹ, t = ε−1/3t̃

where differentiation is with respect to t̃ in (33). To analyze (33) one relies on the classical
asymptotic theory of Ricatti equations [21] to find the relevant global solutions of (33). One
conjecture is that a fully global analysis could be avoided if there would be additional steady
states in R

2 for (33). Instead of using a spherical blow-up of the form (30) a potential choice is

Φ : S1 × S1 × [0, r0] → R
3,

where S1×S1 = {(x2+ y2+ ε2+R
2− r

2)2 = 4R2(x2+ y2)} is the usual 2-torus with major and
minor radii R and r that can be used as free parameters. A projection of this torus along the
ε-axis yields an annulus in the (x, y)-plane. In particular, if we think about the inner boundary
of the annulus in a ’classical chart’ then it may potentially contain steady states at which the
dynamics could be analyzed locally. Of course, as for the transcritical singularity discussed in
the last section, this idea is not necessary for the analysis of the fold point [6, 13] but it may
have the potential to avoid difficulties for other singularities.
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