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Abstract. Fusion energy from reacting hydrogen (protons) with the boron isotope 11 (HB11) resulting in 

three stable helium nuclei, is without problem of nuclear radiation in contrast to DT fusion. But the HB11 

reaction driven by nanosecond laser pulses with thermal compression and ignition by lasers is extremely 

difficult. This changed radically when irradiation with picosecond laser pulses produces a non-thermal  

plasma block ignition with ultrahigh acceleration. This uses the nonlinear (ponderomotive) force to 

surprizingly resulting in same thresholds as DT fusion even under pessimistic assumption of binary 

reactions. After evaluation of reactions trapped cylindrically by kilotesla magnetic fields and using the 

measured highly increased HB11 fusion gains for the proof of an avalanche of the three alphas in 

secondary reactions, possibilities for an absolutely clean energy source at comptitive costs were 

concluded.    

 

 

1.  Introduction 
Energy generation from laser driven fusion of deuterium D with tritium T (DT) arrived at highest 

fusion gains at the NIF project [1][2] by using indirect drive using up to 2 MJ laser pulses of about 

nanosecond duration where the thermal processes with ablation-compression and spark ignition are 

involved. A similar option with direct drive and volume ignition is being studied [3] for thermal driven 

laser-fusion with nanosecond laser pulses.  

     This is in basic contrast with using picosecond (ps) laser pulses with needing energy fluxes E* of 

about 10
8
J/cm

2
 for igniting uncompressed solid density DT. Initiated by Chu [4], a non-thermal energy 

transfer from laser energy into plasma blocks is used to avoid complicate thermal determined 

mechanisms of the nanosecond interaction. This is possible now through the Chirped Pulse 

Amplification CPA [5] of laser pulses of ps and shorter duration with powers above petawatt (PW). 

The ultrahigh acceleration of the plasma blocks was theoretically-numerically predicted in 1978 and 

measured [6] in agreement with the theory [7].  

    The advantage of the ps-block-ignition arrived at the surprising result [8][9], that the 

environmentally clean fusion of protons with the boron isotope 11 (HB11) is possible at similar 

thresholds as DT, while thermal ignition was considered as impossible with needing compression of 

HB11 to more than 100000 times solid state density. Next steps of these developments focus on the 

combination of these results with cylindrical trapping of the fusion reaction with ultrahigh magnetic 
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fields of about 10 kilotesla and by using the measured highly increased gains of HB11 fusion as an 

avalanche ignition process.       

 

2.  Block ignition by picosecond laser pulses 

The drastic difference between the interactions of laser pulses of ps and ns duration is given by the  

force density f in the plasma being not only determined by the gas dynamic pressure p but also by the 

force fNL due to electric E and magnetic B laser fields of frequency ,  

 

            f  =  -p  +  fNL                                                                                                                       (1)   

 

where the force fNL is given by Maxwell’s stress tensor as Lorentz and gauge invariant nonlinear force 

 

  fNL   =  [EE + HH - 0.5(E
2 
+ H

2
)1 + (1+(/t)/)(n

2
-1)EE]/(4)  - (/t)EH/(4c)      (2)                                                                                                               

 

where 1 is the unity tensor and n is the complex optical constant of  the plasma given by the plasma 

frequency p. At plane laser wave interaction with a plane plasma front, the nonlinear force reduces to   

 

            fNL = - (x)(E
2
+H

2
)/(8p/)

2
(x)(Ev

2
/n)/(1                                                   (3) 

 

showing how the force density is given by the negative gradient of the electromagnetic laser-field 

energy-density including the magnetic laser field from Maxwell’s equations. Ev is the amplitude of the 

electric laser field in vacuum after time averaging. The second expression in Eq. (3) is Kelvin’s 

formulation of the ponderomotive force in electrostatics of 1845 [10]. 

      The difference to laser interaction by ns thermal interaction against ps non-thermal nonlinear force 

driving is determined by fNL interaction dominating in Eq. (1). For the ns interaction, the first term 

dominates at low laser intensities while with ps, the second term dominates in which case the quiver 

energy of the electrons of the laser field has to be higher than their thermal energy of motion. A 

numerical example about nonlinear force acceleration of a slab of deuterium plasma irradiated by a 

neodymium glass laser pulse is shown in Figure 1. During the 1.5 ps, the plasma reached velocities 

above 10
9
cm/s by the ultrahigh acceleration above 10

20
cm/s

2
. The generation of the plasma blocks, one 

moving against the laser light and the other into the target is a nonlinear force driven dielectric 

explosion as a non-thermal not collision-determined absorption and should not be understood as 

radiation pressure acceleration.  

 

 

Fig. 1. 1018 W/cm2 neodymium glass laser incident from 

the right hand side on an initially 100 eV hot deuterium 

plasma slab whose initial density has a very low reflecting 

bi-Rayleigh profile, resulting in a laser energy density and 

a velocity distribution from plasma hydrodynamic 

computations at time t=1.5 ps of interaction. The driving 

nonlinear force is the negative of the energy density 

gradient of the laser field (E2+H2)/8 The dynamic 

development of temperature and density had accelerated 

the plasma block of about 15 vacuum wave length 

thickness of the dielectric enlarged skin layer moving 

against the laser (positive velocity) and another block into 

the plasma (negative velocity) showing ultrahigh 

>1020cm/s2 acceleration ([10]: figures 4.14 & 4.15) as 

computer result of 1978.  

             

     The experimental proof of the ultrahigh acceleration was possible [6] in full agreement with the 

results of computations in 1978, after laser pulses of higher than terawatt (TW) power and about ps 

duration were available only thanks to the Chirped Pulse Amplification CPA [5]. With these ps 

ultrahigh accelerations the plasma block ignition of solid density DT by the nonlinear force was 
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possible and updated [8]. Computation of DT and HB11 fusion using the ps-block ignition [8] showed 

many details of the generated fusion flames with velocities of few 1000 km/s, the delayed generation 

of a Rankine-Hugoniot shock fronts, local distribution of reaction rates etc. [11], however, in one 

dimension plane wave computations. Using spherical laser irradiation needed laser powers in the 

exawatt range for gains of few hundred.         

 

3.  Secondary avalanche reactions 

The results reported up to this stage were based on calculations of binary reactions as it is the case for 

DT. These binay reactions for protons with 
11

B used in the computations, however, were a rather 

pessimistic assumption. The three 2.9 MeV alphas from an initial binary reaction can by elastic 

collisions transfer energy to boron nuclei or protons such that they secondarily produce each three 

further alphas with avalanching to a high energy gain. Computations were performed [13] confirming   

the secondary reactions.   

     Before considering the elastic collisions in view of stoping power and related processes it was 

fortunate that experiments became known [12] from which the avalanche process was evident [13]. 

Following the groundbreaking measurements of HB11 reactions of more than 10
6
 under rather 

complicate experimental conditions [14], the transparent conditions of the measurement of 10
9 

reactions per steradian [12] by the PALS iodine laser based on few hundred Joules laser pulses in the 

range of 100 ps duration were so strongly elevated even above comparable results with DT [13] that 

this could only be due to the secondary reactions with the avalanche.  

     The avalanche HB11 reaction can be explained in quantitative agreement with the experiment [12] 

numerically by evaluating an extremely non-equilibrium state of the plasma by elastic collisions of the 

alpha particles with the boron nuclei and protons where the broad energy range around 600keV fits 

with the most exceptionally increased HB11 fusion cross section [15]. 

     Based on this clarification for the avalanche secondary processes, the following cylindrical trapping 

of the HB11 reaction with solid density fuel could be used [16] where the ultrahigh magnetic fields in 

the range of  10 kilotesla [17] were applied, Figure 2. 

 

 

 

Figure 2. Generation of a 10 kiloTesla magnetic 

field of about 2ns duration in the coils by firing a 

>kilojoule nanosecond  laser pulse 1 into the hole 

between the plates. The HB11 fusion fuel is a solid 

cylinder of 1cm length and 1 mm radius coaxially 

located in the coils and the block-ignition of the 

fusion flame is produced by a ps-30 PW laser pulse 

of 0.2 mm diameter for block ignition from laser 2.     

 

     Based on the computation [16] of block ignition by a ps laser pulse 2 in Figure 2 of 10
20

W/cm
2
 

intensity on a solid  HB11 cylinder of 0.2mm diameter within a 10 kilotesla magnetic field shows a 

slow radial expansion against the trapping and an axial propagation of the reaction with several 

thousands of km/s velocity during about a ns. With avalanche reaction, the cylinder of Fig. 2 is nearly 

completely reacting producing more than one gigajoule energy of alpha particles by the irradiated 30 

kJ laser pulse 2.           

 

4.  Estimations about preliminary parameters for HB11 fusion generation.  

Following the results [16] for a reaction scheme of Fig. 2, a ps laser pulse of 30 kilojoule 

energy (30 PW power) should produce more than a GJ energy in clean alpha particles. A 

technology path capable of producing 200-PW, 0.1-ps pulses based on NIF-like laser technology has 
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recently been defined and could be extended to meet the needs of GJ alpha production [18].Figure 3 

describes the scheme of a fusion reactor for converting the energy of the alpha particles into 

an electrostatic pulse in the range close to 1.4 megavolts using the technology of high voltage 

direct current HVDC power transmission electricity.  

 

 
 

 

Figure 3. Scheme of a HB11 fusion reactor 

without any radioactive radiativon problems is 

based on non-thermal plasma block ignition by 

nonlinear forces using a 30kJ-picosecond laser 

pulse 2. The central reaction unit (Figure 2) located 

in the center of the reactor sphere is electric 

charged to the level of -1.4 million volts against the 

wall of the sphere such that the alpha particles 

(helium nuclei) produce more than a gigajoule 

energy, of which a small part is needed for the 

operation of the laser pulses. One part of the gained 

costs of electricity is needed for the reaction unit 

being destroyed and the HB11 fuel at each reaction 

[13][15].    

         It was estimated [13] for a power station working with one reaction per second, that after 

deducting the costs for investment and operation, the energy of the value of up to $300Million per 

year may be produced for the grid. 
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