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Abstract. D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning 

Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY 

QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant 

properties from radial part of D dimensional Dirac equation and the angular quantum numbers 

were obtained from angular part of D dimensional Dirac equation. The SUSY operators was 

used to generate the D dimensional relativistic wave functions both for radial and angular parts. 

In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic 

energy. In the classical limit, the partition function of vibrational, the specific heat of 

vibrational, and the mean energy  of vibrational of some diatomic molecules were calculated 

from the equation of  non-relativistic energy with the help of error function and Mat-lab 2011. 

 

1. Introduction 

In some area of physics, relativistic quantum mechanics play important roles. Finding an accurate 

exact solution of Dirac equation for a certain potential is one of its important roles. Various methods 

have been applied to solve the Dirac equation for some potentials, central and non-central potentials, 

with or without tensor coupling potentials, such as NU method, [1-6] SUSY QM method, [7-11] and 

Romanovski polynomial method. [12-16] 

For very limited potentials, three dimensional radial Dirac equations are exactly solved only for s-

wave (l = 0). However, the three dimensional radial Dirac equations for the spherically symmetric 

potentials can only be solved approximately for 𝑙 ≠ 0 states due tothe approximation scheme of the 

centrifugal term ~𝑟−2. [17-23] 

Furthermore, the extension in higher dimensional spaces for some physical problems is very 

important in some physics area. The D-dimensional non-relativistic and relativistic physical systems 

have been investigated by many authors, such as ring-shaped pseudoharmonic potential, [21] the 

isotropic harmonic oscillator and inverse quadratic potential, [22] Pseudoharmonic potential,[23] 

Kratzer-Fues potential, [24-25]hydrogen atom, [26]modified Poschl-Teller potential, [27] linierly 

energy dependent quadratic potential, [28] trigonometric scarf potential, [29] ring-shaped Kratzer 

potential. [30] 

The Dirac equation for a charged particle that moves in a field governed by q-deformed Poschl-

Teller potential[31] in D dimension is investigated using supersymmetric quantum mechanic (SUSY 

QM) with idea of shape invariance. SUSY QM method is developed based on Witten proposal [32] 

and the idea of shape invariant potential is proposed by Gendenshtein [33]. SUSY QM is a powerful 

tool to determine energy spectrum and wave function of shape invariant potentials for one dimensional 

Schrodinger equation. Thus the relativistic energy spectrum is obtainable by using the idea of shape 

invariance and the wave functions are achieved by using lowering and raising SUSY operators. Some 

of hyperbolic and trigonometric potentials are exactly solvable within the approximation of centrifugal 

term and their solutions have been reported in the previous papers [10-11].The q-deformed modified 

Poschl-Teller plus Manning Rosen non-central potential that govern the diatomic molecules vibration 

is expressed as 

 

        2 2 2 2 2( , ) ( 1) sinh ( 1) cosh 1/ ( 1) sin 2 cotq qV r t a a tr b b tr r p p s         
 

 (1)                   
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with 1, 0; 0; 0, 0a b p s     , , ,a b p and s are positive constants that control the depth of 

the potential, t is positive constant which controls the width of the potential, 0 r  , q causes the 

deformation of  the potential shape, 0 1q  . In the non-relativistic limit, the relativistic energy 

equation reduces the non-relativistic energy equation. In the non relativistic limit is the condition when 

the  energy is subtracted by the mass equals to the non-relativistic energy which is usually obtained 

from Schrodinger equation solution of the system, and the condition where the sum of the energy and 

the mass equals to twice of masses. The non-relativistic energy is used in calculation of thermal 

properties in classical limit. In classical regime,  the thermal properties including vibrational partition 

function Z,  mean energy U, and specific heat C [34,35] are determined by applying the non-

relativistic energy equation. 

This paper is organized as follows. Brief review of SUSY quantum mechanics is presented in 

section 2, solution of Dirac equations and its application to study thermodynamical properties are 

presented in section 3 and conclusion is presented in section 4. 

 

2. Review of Supersymmetric Quantum Mechanics Approach Using Operator 

2.1. Supersymmetry Quantum Mechanics (SUSY QM) 

According to the definition proposed by Witten, in a SUSY QM there are super charge operators

iQ which commute with the Hamiltonian 
ssH and obey to anti commutation  algebra [32] 

 
  0, ssi HQ ;    ssijji HQQ , with,  i = 1, 2, 3, … (2) 

with
ssH  is called supersymmetric Hamiltonian. Witten proposed that the SUSY QM is the one 

dimensional model of SUSY field theory and he stated that the simplest SUSY QM system has 

N=2[32] where the two charge operators are given as 

          1 1 2 2 2 11/ 2 2 ( ) ; 1/ 2 2 ( )Q p m x Q p m x          (3) 

where𝜎𝑖  are the usual Pauli spin matrices,  p i x     is the usual one dimensional momentum 

operator, and )(x is superpotential. By inserting equation (3) into the second equation of equation (2) 

we get, 
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2

2
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ss ss

d d x
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Hm dx dxm
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
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 
   

     
   

   
 

 (4) 

From equation (4) we have 

  

2 2( ) ( ) '( ); ( ) ( ) '( )
2 2

V x x x V x x x
m m

       

 

(5) 

Here 𝐻− and 𝐻+ , are supersymmetry partner of the Hamiltonian, )(xV
and )(xV

 are the 

supersymmetry partner potential. To simplify the determination of the energy spectrum and the wave 

functions, the new operators, raising and lowering operators, are introduced as 

 

)(
2

x
dx

d

m
A  

and )(
2

x
dx

d

m
A 



 

(6) 

By inserting equation (6) into equation (5) we get the SUSY Hamiltonian as 

 
AAxH 

 )( and


  AAxH )(
 

(7) 
to factorize the usual Hamiltonian as 

 
002

22

0 );(
2

EaxV
dx

d

m
EHH  



 
(8)  

By using equation (5) and equation (8) it is obtained that 

 
000

2

00 );('
2

);();()( Eax
m

axEaxVxV   
  (9) 
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where )(xV  is the effective potential,  while )(x is determined hypothetically from equation (9) 

based on the shape of effective potential from the associated system. 

 

2.2. Shape Invariance 

It is observed that the supersymmetry only gives the relationship between the eigenvalues and 

eigenfunctionsbetween the two Hamiltonian partners but does not provide the actual spectrum. 

[36].The energy spectrum is only obtainable by implementing SUSY charged operators properties and 

the condition of shape invariant proposed by Gendenshtein.[33]. If a pair of potentials )(xV defined 

in equation (5) are similar in shape but different in the parameters, then they are called to be shape 

invariant. More specifically, if ),( 0axV  satisfy the condition that 

 
)();();( 11   jjj aRaxVaxV  (10) 

with           2 2

1 1 1( ; ) ( ; ) '( ; ); ( ; ) ( ; ) '( ; )
2 2

j j j j j jV x a x a x a V x a x a x a
m m

               (11) 

where j = 0,1,2,.., and a is a parameter in our original potential, V-,  whose ground state energy is zero, 

)( 0afa jj   where  f jis a function applied j times, the remainder )( jaR  is a’s dependence  but is 

independent of  x, then ),( 0axV is said to be shaped invariant. The energy eigenvalue of the 

Hamiltonian H  is given by [33] 

 
 




n

k kn aRE
1

)(
)(
 

(12) 

and by using equation (8) and equation (12) we get the energy spectra of the system given as,  

 0

)(
EEE nn 



 
(13)

 
Based on the characteristics of lowering operator, the ground state wave function of H-, whose ground 

state energy is zero, is obtained from condition that, 

 




 0
)(

0H 0
)(

0 


A
 

(14) 

Subsequently, the excited wave function, ),(),...,( 0

)(

0

)(

1 axax n


 of  H are obtained by using 

raising operator operated to the lower wave function, [37] given as   

 
( ) ( )

0 0 1 1 0( ; ) ( ; ) ( . ).... ( , ) ( ; )n n nx a A x a A x a A x a x a     


 

(15) 

In the Dirac equation we have applied the SUSY potential partner and the SUSY operator equations 

(5-6) as 

 )(')()( 2 xxxV  
 ; )(')()( 2 xxxV  

 (16)   

 
( ); ( )

d d
A x A x

dx dx
     

 
(17)

      

 

The SUSY QM and the idea of shape invariance potential are suitable to be used in solving one 

dimensional Schrodinger equation problems. One dimensional Dirac equation reduces to one 

dimensional Schrodinger type equation by suitable change in parameters which are the coefficient of 

the potential function and the energy term. 

  By obtaining the super-potential, the potential partners, 
0( , )V x a  

and 
0( , )V x a

, and the SUSY 

operators, A and A are obtained and so the energy spectrum and the wave function. 

3. Solution of Dirac Equation for Non-central Potential in D dimension 

3.1. Solution of radial part of  D dimensional Dirac Equation  

The Dirac equation with the scalar potential )(rS


 and magnitude of vector potential )(rV


 is 

given as in Hu et al. [38] 

     )()()() )((. rrVErrSMp


   
(18) 
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where M is the relativistic mass of the particle, E is the total relativistic energy, and p


 is the three-

dimensional momentum operator,  i  

 
0 0

;
0 0

I

I


 



   
    

     

(19) 

with


are the three-dimensional Pauli matrices and I is the2 × 2 identity matrix. The potential in 

equation (18) is spherically symmetric potential,it does not only depend on the radial coordinate 

rr


 , and we have taken 1 and 1c . The Dirac equation expressed in equation (18) is invariant 

under spatial inversion and therefore its eigenstates have definite parity. By writing the spinor in D 

dimension as 

 

 

 
( )

r
r

r




 
  

   

(20) 

and if we insert equations (19) and (20) into  equation (18) and use matrices multiplication, we achieve 

 
  )()()()(. rrVErSMrp


 

 
(21) 

   )()()()(. rrVErSMrp



 

(22) 

In the exact spin symmetric case, when the scalar potential is equal to the magnitude of vector 

potential )()( rVrS


 , then the upper Dirac spinor obtained from equations  (21) and (22) are 

 
  )()(2)(

.
. rrVEMr

EM

p
p








 

  (23) 

By applying the Pauli matrices, it is simply shown that if    2.. ppp 


 , then equation (23) 

becomes 

     2 2 2( ) 2 ( ) ( )p r V r M E r E M r       (24) 

Since
22

DDp  with the hypersphericalLaplacian 2

D is given by [39-40] 

 

2
2 1 1 2 2

12 2 2

1 1 1 1

1 1
sin

sin sin

D D D D
D DD

D D D D

Ld d
r r

r r r d d


   

   


   

    
      

     

 

(25) 

with 2

2 2 2( 3)D D DL l l D    
. 

To reduce equation (24) into Schrodinger like equation we set VV )2/1( and if V is modified 

Poschl-Teller plus trigonometric Manning-Rosennon-central potential then equation (24) becomes
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      

       
          

    

 

(26)

 

The upper component of Dirac spinor in equation (20) is given as

 
 

1 2... . 1 2 11

2

1
ˆ( ) ( , ,..., )

Dl DD
r F r Y x

r

   
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 

 

and     
1 2... . 1 1 1 2 1

ˆ( ,..., ) ,...,
D D DY x H     
    

 
(27)

 
where x


 is a D dimensional position vector in hyper-spherical Cartesian coordinate[40,41], the unit 

vector along x


 vector is denoted as rxx /


 .The hyper-spherical Cartesian coordinate components 

1x , 
2x , 3x , . . . . are  given as 

 

1 1 2 3 1 2 1 2 3 1

1 1 1

cos sin sin ...sin ; sin sin sin ...sin ;

cos sin sin ...sin 3 1

D D

j j j j D
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x r j D
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 

  

 
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(28) 

 1 2 1 1cos sin ; cosD D D D Dx r x r        (29) 
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The simultaneous eigenfunctions are given as 
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By applying the variable separation method we have radial and angular parts of D dimensional Dirac 

equation which are given as 
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In order to solve the radial Dirac equation in Eq.(33), we use the approximation value for the 

centrifugal term as in Greene and Aldirch, and in Ikdhair [20-21],  2 2 2

01 1 sinhqr t d tr  , for 

1tr and 12/10 d . By setting
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equation (33) becomes  
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Equation (37) is solved using SUSY QM and by introducing the hypothetical super-potential as in [26-

27] 

 
trtBtrtPr qq tanhcoth)(   (38) 

using equation (9), equation (37) and equation (38) we get 

    

 
 2 2 2 2 2 2 2 2 2 2

02 2

' ' 1( 1)
( )( csc ) ( )( sec ) ' 2

sinh cosh
q q

q q

b bc c
t t P P q h tr t B B q h tr E BP P B t

tr tr

 
          

      

(39) 

that gives 

             

(1/ 2) (c( 1) / q) 1/ 4P c     ; (1/ 2) (b'(b' 1) / q) 1/ 4B      ;   22

0' tBPE 

 

(40)

    The superpotential,super-partner potentials, ground state energy and raising-lowering operators 

obtained from equations (5), (6),(12), (13), and (38) are 

 

1 ( 1) 1 1 '( ' 1) 1
( ) coth tanh

2 4 2 4
q q

c c b b
r t t tr t t tr

q q


    
             
     

(41) 

       
22 2 2 2 2

0( , ) 1 csc 1 sechq qV r a q t P P h tr qt B B tr t P B      

 

(42) 

       
22 2 2 2 2

0( , ) 1 csc 1 sechq qV r a q t P P h tr qt B B tr t P B      

 

(43) 

 trtBtrtP
dr

d
A qq tanhcoth  ; trtBtrtP

dr

d
A qq tanhcoth 

 
(44) 

By comparing the super-partner potential  ),( 0arV
 and ),( 0arV

 we get the translation parameters as 
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,0 Pa  ,....11  Pa ,nPan  and ,0 Bb  ,....11  Bb ,nBbn 

 
(45)

 

By implementing equations (10-13) and (42-43) and (45) we get the equation of relativistic energy 

spectra given as
 

 

    
2

' 2 ( 1) 1/ 4 '( ' 1) 1/ 4 1 2nE t c c q b b q n         

 

(46) 

The relativistic energy equation obtained from equations (35-36) and (46)  is given as 

 

 
2

2 2 2 2

0

1 3 ( 1) 1 '( ' 1) 1
( )( ) 1 2

2 2 4 4
l

D D c c b b
E M t d t n

q q


          
                               

(47) 

with  ( 1), ' ' 1c c b b  is expressed in equation (35) and 

   
2

2 22

22

'
( 2) / 2 ( ' ) ; ' 1/ 2 ( 3) / 2 ( ) ( 1)

( ' )
l D

s
D p n p D E M p p

p n
              

  

(48)  

which are obtained from angular solution in the next section.From the relativistic energy equation in 

equation (47), we can obtain the numerical value of relativistic energy by using Mat-Lab in Table 1. 

Table 1. Relativistic energy for various dimensions level

  0 20.8, 0.3, 1. /12, 6, 2, 4, 2, 0.75, 5 1/ , 2Dt s d a b p s q M fm l            

𝐷 𝐸0 𝐸1 𝐸2 𝐸3 𝐸4 

3 -5.9455 -7.1363 -7.9716 -9.2079 -9.2079 

4 -5.8748 -7.0824 -7.9306 -8.6091 -9.1800 

5 -5.8075 -7.0212 -7.8823 -8.5695 -9.1467 

 

By using equations (14-15) and (44) we obtain the un-normalized relativistic ground state and first 

exited state wave functions for upper Dirac spinnor 

 
    

 0 1(sinh ) (cosh ) ; 2 coth tanh (sinh ) (cosh )P B P B

q q q q q qF C tr tr F tP tr tB tr tr tr       
 (49) 

with the values of P and B are expressed in equation (40). By using raising operator in equation (44) 

we obtain all exited states of wave functions in exact spin symmetric case. 

 
(a) 

 
(b) 

Figure 1.Ground state (solid line) and first exited (dash line) radial wave functions for (a)𝐷 =
3,(b)𝐷 = 4 

 

3.2. Solution of Anggular part of  D dimensional Dirac Equation  
The angular part of D dimensional Dirac equation for Manning Rosen angular potential are 

 

1 11

1 2

( 2)1
sin ( 1) ( ) 0;

sin sin

j jj

j j j jj

j j j j

jd d
j H

d d
 

   

 



    
       

   

 2,2  Dj (50) 
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 2

22

1 12 2 2

1 1 1 1

1 ( 1)
sin ( ) 2 cot ( ) 0

sin sin sin

DD

D j DD

D D D D j

Ld d p p
E M s H

d d
   

    



 

   

    
               

(51) 

These two equations are solvable by using SUSY QM approach by reducing it into one dimensional 

Schrodinger like equation by suitable substitution of  wave functions in equations (50) and (51) as 

                   

( 1)/2( ) ( ) sin j

j j jH Q  

     

and

       

( 2)/2

1 1 1( ) ( ) sin D

D D DH Q  

  

 

(52)

 
By inserting equation (52) into equations (50) and (51) we obtain 

 

 

    
22 2 2

1 1( ) / ( 1) ( 1) / 2 ( 2) ( 1) / 2 ( 3) / 2 sin ( ) 0j j j j j j j jd Q d j j j j j Q    
                 

(53) 

and 

 
    2

2 22 2

1 1 1 12 2

1 1

( 2) / 2 ( 4) / 2 ( 1)
( ) / ( 2) / 2 ( ) 2 cot ( ) 0

sin sin

D

D D D D

D D

L D D p p
d Q d D E M s Q    

 



   

 

     
         
   

 (54) 

By  setting the parameters in equation (53) as 

 
2

( 1) ( 1) / 2j j j j      ;   1 1( 2) ( 1) / 2 ( 3) / 2 ( 1)j j j j j o o        
 

(55) 

then we have 

 

2 2 2( ) / ( 1) sin ( ) 0;j j j jd Q d o o Q               (56)

 

where  is assumed to stand for the energy.The hypotheticalsuperpotential for equation (56) is set as 

 jj I  cot)( 
 

(57) 

By using equations (9), (56), and (57) we get the values 
 

 
)1(  oI

 
and    

2
2

0 1( 1) 1/ 2 ( 2) / 2jo j       
 

(58)              

The superpotential,super-partner potentials, and raising-lowering operators obtained from equations 

(5), (6),(12), (13), and (57) are 

 
   

2 22 2

0 0( , ) ( 1) sin 1 ; ( , ) ( 2)( 1) sin 1V a o o o V a o o o              (59) 

 ( 1)cot ;j jA d d o    ( 1)cotj jA d d o     

 

(60)
 

 

By shifting 1oo  in equation (59) and by applying equations (10-13) with equations (59-60) we 

obtain  

 

   
2 2

1( 1) ( 1) / 2 1 ( 1 )j j j jj j o n n             

 

(61) 

The ground state and first excited state wave functions are obtained by using equations (14-15), and 

(60) as  

 

   
1

0 1( ) sin ; ( ) ( 1)cos ) sin
o o

j j j j jQ C Q o    


   
 (62)   

(73) 

The angular wave function for the highest level of angular component is obtained from the solution of 

equation (54) by setting 

 

    2

2 ( 2) / 2 ( 4) / 2 ( ) ( 1) '( ' 1)DL D D E M p p p p        

 

(63) 

 ')( ssME  ;   2
' ( 2) / 2E D  

 
(64) 

such that equation (54) become 

 

2 2 2

1 1 1 1 1 1( ) / '( ' 1) sin 2 'cot ( ) ' ( )D D D D D Dd Q d p p s Q E Q          
       (65) 

By setting the hypothetical superpotential for equation (65) as 
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 NBN DD /cot)( 11     (66)   

and by using equations (9) and (65-66) we have 

 

')2/1'(2/1 ppN  ; Bs  ' ; 2 2 2

0' ' ' 'p s p E   (67) 

By combining equations (5-7) and (65-67) we have the super-potential, super partner potential and 

SUSY operator as given as 

 
1 1( ) 'cot ' 'D Dp s p    

   

(68)

 

 

2

2
2

1

1

201
'

'
'cot'2

sin

)1'('
),(

p

s
ps

pp
aV D

D

D 


 



 


 ;  
2

2
2

1

1

20
'

'
'cot'2

sin

)1'('
),(

p

s
ps

pp
aV D

D




 



 




 

(69) 

 
1 1'cot ' 'D DA d d p s p      ;

 
1 1'cot ' 'D DA d d p s p 

      (70) 

By shifting the parameter 1''  pp  in equation (69) and by applying equation (10-13) with 

equations (68-69) we obtain relativistic energy equation 

 

2 2 2' ( ' ) ' ( ' )nE p n s p n     (71) 

with 'p  in equation (63). 

By using equations (63-64), and (71) we get orbital quantum number equation  given as 

 

 
2 2 2 2( 2) / 2 ( ' ) ' ( ' )l D p n s p n         (72) 

By using equations (8), (17), (18)  and (89) we get the relativistic angular wavefunctions for ground 

state and first exited state which are obtained using equations (14-15) and (70) are , 

 
1

'
'( ) '

0 1sin
D

s
p p

DQ e





 ;       
1

'
' '

1 1 12 'cot ' ' sin
D

s
p p

D DQ p s p e


 


    (73) 

 

The total relativistic ground state and first excited state wave function for any D dimension is obtained 

by combining equations (49), (62), and (73). 

 

3.3. Thermodynamical Properties 

In non-relativistic condition, the relativistic energy equation expressed in equation (47) reduces 

into non-relativstic energy by taking   2 EM  where   is the non-relativistic mass,

  NREME  , NRE  is the non-relativistic energy, and if d0 is small then equation (47) 

 
      

2
2 2 ( 1) 1/ 4 '( ' 1) 1/ 4 1 2nr nr nr nr nrE t c c q b b q n           (74) 

with      ( 1) 2 ( 1 2)( 3 2) ( 1)l nr nra a D D c c        ;   1'')2)1(  nrnr bbbb 
 

(75)

 

 

 

In classical regimes [43], the vibrational partition function, vibrational mean energy, and specific heat 

are obtained from the non-relativistic energy equation in equation (74).The vibrational partition 

function is defined as 

 kT
eZ

n

Enl
1

,),(
0




 


  (76)

 
k is Boltzman constant, Enr is non-relativistic energy spectrum of the system. When the temperature, 

T, is high enough, then the value of   is high ,   
is small, and if 2 21 2t    then  equation (76) 

becomes 

 

2 2

0

( , )
2

y y

n

Z e e dy erfi


  

   


 
    

 
   (77)

 

where

 
  

222NRE t n    ;     1/ 2 ( 1) 1/ 4 '( ' 1) 1/ 4 1nr nr nr nrc c q b b q        

    

(78)
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with  y n    and erfi is the imaginary  error function [44]. 

The vibrational mean energy and the vibrational specific heat are defined as 

 

     2( , ) ln ( , );U Z C T U k U                   (79) 

By using equations (77-79) we obtain the vibrational mean energy and specific heat equation given as 

       

            2 2( , ) 1/ 1/ 2 1/ 2 / exp 2 / 2 /U t t erf t                  (80) 

and

 

2 2 2 2 2 2

2 2

2

21 2 2 2
exp exp 2

21 1 2
( , )

2 22 2

t t t t

t
C k

t terf erf

       

     
 

   

 

                             
       
               

 (82) 

  

 
(a) 

 
(b) 

Figure 3.Graph of  (a) mean energy U as a function of  ,(b) specific heat as a function of   (for 

𝐷 = 4, 𝑛 = 5, 𝑙 = 4, 𝑎 = 6, 𝑏 = 3, 𝑝 = 4, 𝑠 = 2, 𝑞 = 0.75) 

The graphs of mean energy and specific heat as a function of  are shown in figure 3 (a and b). 

From figure 3 (a) and (b) we see that for larger values of   the values of vibrational mean energy and 

specific heat are constant. The specific heat for system whose is governed by q-deformed modified 

Poschl-Teller plus trigonometric Manning-Rosen non-central potential are negatives. The negative 

specific heat may occur for the astronomical objects [45]. 

 

4. Conclusion 

The Dirac equation in D dimensions of q-deformed modified Poschl-Teller  potential plus 

trigonometric Manning-Rosen non-central potential is solved using SUSY QM. The radial part of D- 

dimensions of  the Dirac equation reduces to one dimensional Schrodinger type equation in centrifugal 

approximation scheme. There are two solutions of angular Dirac equations, the first one is for hyper-

spherical harmonic and the other one is for angular potential functions. 

In the exact spin symmetric case, the relativistic energy equation reduces to the non-relativistic 

energy in the non-relativistic condition.  In the classical regime , some thermodynamics properties are 

derived from the non-relativistic energy equation. The mean energy and specific heat are numerically 

calculated from non-relativistic energy equation by using Mat-Lab.  
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