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Abstract. High throughput mRNA sample sequencing, known as RNA-seq, is as a powerful
approach to detect differentially expressed genes starting from millions of short sequence reads.
Although several workflows have been proposed to analyze RNA-seq data, the experiment
quality control as a whole is not usually considered, thus potentially biasing the results and/or
causing information lost. Experiment quality control refers to the analysis of the experiment
as a whole, prior to any analysis. It not only inspects the presence of technical effects, but also
if general biological assumptions are fulfilled. In this sense, multivariate approaches are crucial
for this task.

Here, a multivariate approach for quality control in RNA-seq experiments is proposed. This
approach uses simple and yet effective well-known statistical methodologies. In particular,
Principal Component Analysis was successfully applied over real data to detect and remove
outlier samples. In addition, traditional multivariate exploration tools were applied in order to
asses several controls that can help to ensure the results quality. Based on differential expression
and functional enrichment analysis, here is demonstrated that the information retrieval is
significantly enhanced through experiment quality control. Results show that the proposed
multivariate approach increases the information obtained from RNA-seq data after outlier
samples removal.

1. Introduction
Since their appearance, high throughput sequencing (HTS) technologies have had a great
impact on genomic and transcriptomic researches. One application of HTS is the sample
mRNA sequencing (RNA-seq). This application overcomes many of the limitations of previous
technologies, such as the dependence on prior knowledge of the organism, as required for
microarrays. In addition, RNA-seq promises to unravel previously inaccessible transcriptome
complexities, such as novel promoters and isoforms.
In general, the RNA-seq data analysis implies the identification of expressed genes through of
some experimental conditions, using millions of reads produced by a HTS machine. The huge
and complex output is processed in several steps and requires careful consideration of many
aspects. In this kind of experiments many variation sources exists, including technical and
random effects, which should be properly accounted in order to reduce results bias [1]. At
present, several methodologies and tools are available for a quality control step [2, 3]. But,
in general, they are only focused on the reads assessment or mapping quality instead on the
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experiment as a whole.
For instance, in gene expression analysis, only a small fraction of genes are expected to show
Differential Expression (DE) between experimental conditions. However, a global overview of
all the analyzed genes should provide, if it exists, some evidence of the evaluated experimental
conditions. For example, sample replicates (technical or biological) should behave similarly. On
the contrary, an opposite behaviour is expected from samples of different conditions. These
effects cannot be seen in a sample by sample exploration, thus requiring a whole sample analysis
by means of multivariate approaches.
Here, a multivariate approach for RNA-seq experiment quality control is proposed. The
procedure is based on simple and yet effective well-known methodologies, such as Principal
Component Analysis (PCA), density, scatter and boxplots. The combination of these
methods allows performing appropiate experiment quality control. In particular, its utility
is demonstrated here in an RNA-seq control-treatment experiment.

2. Materials and Methods
2.1. RNA-seq database
mRNA samples of human Oral Squamous Cell Carcinoma (OSCC) were studied (unpublished
data). Five of these were from patients with lymph node metastasis and five from nonmetastatic
subjects. These experimental conditions, hereafter, are called treatment and control respectively.
Patients, all men, were collected from Hospital A.C. Camargo, São Paulo, Brazil. mRNA sam-
ples were sequenced using 75-35 pair-end RNA-seq protocol using ABI5500 SOLID R© platform.
Two sequencing runs were done, involving six lanes in each other. In order to perform the se-
quencing, samples were divided in two groups, five per run, each containing both experimental
conditions. In each sequencing group, samples were split into six aliquots, one for each lane
and sequenced. Pair sequenced read files of each lane were separately mapped to the Ensembl
reference Human Genome (GRCh37/hg19, [4]) using LifeScope R© software. Then, all alignments
of each sample were paired and combined, resulting in one alignment file per sample. These ten
files represent the starting input for the proposed approach.

2.2. Quality Control Workflow
The Quality Control Workflow involves several steps that must be carried out in order to perform
the global control.

2.2.1. Data Filtering: This step is focused on gene filtering. Low mapping quality, low counts
and not interesting genes will be excluded after this step.

(i) Reads filtering

Low quality mapping value (MAPQ, [5]) and non-uniquely aligned reads can result in false
expression value estimation. For this reason, reads with MAPQ bigger than 20 and read pairs
uniquely aligned to a genome feature were counted using HTSeq [6] software with the intersection
strict mode. Here, a gene was considered as a genome feature, where each gene is assumed as
the union of all its exons. Then, the R platform [7] was used to join count tables in order to
build a GxP count matrix, CM, (G: # genes, P: # samples) that will be used in the downstream
analysis.

(ii) Gene filtering

Usually noisy data removal is essential in order to reduce possible results bias. In the context
of RNA-seq data analysis, only reliable measured genes are required. In addition, if functional
analysis will be performed, un-annotated and non-coding genes should be removed. In this
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sense, genes with expression counts lower than 10 in at least one condition (non-reliable genes),
genes with less than 200 base pairs (small RNAs) and genes without annotation in the functional
analysis DAVID platform ([8, 9]) were removed. The resulting expression count matrix is named
CM1.

2.2.2. Global Quality Control: Before gene expression analysis performing, several aspects
like samples comparability and compliance of global experimental design assumptions must
be checked. Keeping in mind that the work involves a set of samples a multivariate approach is
necessary in order to explore them together.

(i) Examining sample distributions

In a general biological context, all genes cannot be affected by the experiment. Therefore, only
a small fraction of them are expected to be differentially expressed. Thus, gene counts boxplots
and density functions plots should be similar in shape and position. If this does not occur, a
between sample normalization process is necessary. In the RNA-seq context, it is well-known
that library size seems to be one of the main factors to account for distribution variability [10].
The normalization method selection process is beyond the scope of this work. The edgeR-RLE
(Relative Log Expression) implementation is suggested to calculate size factors of count matrix
[11]. Finally normalized samples density and boxplots should be obtained and re-assessed.

(ii) Exploring sample separability and filtering

This is an important and crucial step. The samples gene expression global separability into
two experimental groups must be assured. In this context, a multivariate approach could be
used over the count matrix. Principal Component Analysis (PCA) is a simple and effective
descriptive technique that allows checking this statement [12]. PCA results often reveal data
relationships that were not previously suspected and thereby allow interpretations that would
not ordinarily result. The analysis starts from the covariance (Σ) or correlation (ρ) matrix of p
random variables X1, X2, ..., Xp. The covariance matrix’s eigenvalues (λi) and corresponding
eigenvectors (ei) are computed obtaining the uncorrelated linear combinations given in equation
1 which define the principal components.

Y1 = e′1X = e11X1 + e12X2 + ...+ e1pXp

Y2 = e′2X = e21X1 + e22X2 + ...+ e2pXp (1)

...
...

Yp = e′pX = ep1X1 + ep2X2 + ...+ eppXp

The principal components variables are defined as those linear combinations which have max-
imum variance and are ordered in a descending way. Then, the first two principal components
could be explored in order to explore sample variances using a scatter plot. In RNA-seq case-
control experiments, two groups of sample are involved, in which genes are the variables of
interest. Given the fact that an experiment only affects a small group of genes, sample variances
should be related to them. Thus, it is expected that the replicate from the same experimental
condition appear grouped together in the principal components space and different condition
samples appear as far apart as possible.
Since metastatic vs. non-metastatic global sample separability must holds, any sample that
invalidate this assumption is considered as an outlier sample. The presence of outlier samples
could bias the results, therefore they should be identified and removed from the analysis. Af-
ter that, gene control and filtering must be carried out again, in order to obtain a new count
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matrix, CM2. If any outlier sample is not removed, neither sample separability nor differential
expression analysis would be possible.

2.2.3. Impact on downstream analysis: Metastatic and non-metastatic OSCC have very differ-
ent outcome, thus quite different gene expression profiles are expected. In order to demonstrate
the importance of experiment quality control and outlier sample removal, downstream analysis
results obtained using both count matrices (CM1 and CM2) were contrasted. In this sense,
gene expression analysis was conducted using DESseq2 R package [13]. This package provides
methods to detect and correct those genes having extreme values affecting gene model fit, called
count outlier genes. Count values of them are imputed and recovered for DE analysis. DE re-
sults were compared in terms of amount of Differentially Expressed Genes (DEG) and in terms
of the amount of count outlier genes . After DEG determination, functional enrichment analysis
using DAVID platform was done ([8, 9]). In particular, Gene Ontology (GO) terms related to
Biological Process (BP) category were explored [14]. Functional enrichment analysis results were
validated by means of literature evidence.

3. Results
3.1. Data Filtering
The overall raw count expression matrix consists in G=54.664 genes and P=10 samples. From
them, the gene filtering process removed:

(i) 34.657 noncoding and unannotated genes

(ii) 828 small RNAs

(iii) 5.988 low counts genes

This yields to the expression count matrix CM1 consisted in 13.191 rows and 10 columns.

3.2. Global Quality Control
Distributional characteristics of the samples for raw and normalized expression counts are shown
in Figure 1. For instance, median expression bias is observed over different samples (panel a))
and also observed in density distribution (panel b)). Data normalization using edgeR-RLE
method removed this bias, providing homogeneity for both density and boxplot distribution
of expression values over samples (panel c) and d)). No evidence of outlier samples can be
observed beyond the fact that the normalization process improves distributional assumptions.
Then, PCA was performed over raw and normalized CM1 matrix. The two first principal
components are shown in the scatter plots of panel a) and panel b) in Figure 2. It is observed
that samples are not completely separated between metastatic (triangles) and non-metastatic
(circles) as expected. One non-metastatic (metastatic) sample, R2C1 (R2C2 ), tends to be closer
to the opposite experimental condition indicated by arrows. This suggests that they are outlier
samples rather than a technical effect and they could be removed from analysis.

After outlier samples removal, Data filtering step was carried out again, obtaining the second
count matrix, CM2 (13.482x8). It worth to note that this matrix has a greater number of
genes than CM1. Indeed, when only considering 8 samples the low count filtering criterion is
modified. Then, edgeR-RLE normalization and PCA were performed. In Figure 3, PCA scatter
plots of the two first principal components, for both raw (panel a)) and normalized (panel b))
CM2 are shown. Now, separation between groups was achieved. It can be observed that outlier
samples removal improves the experimental conditions separation in the principal component
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Figure 1. Sample counts boxplot (left) and density plot (right). Raw counts (a) and b)).After
normalization (c) and d)). RXCY stands for: RX (replica number), CY (condition number)
where C1/2 is nonmetastatic/metastatic sample respectively.

space. In addition, it is remarkable that normalization process does not affect or correct sample
separability suggests that is not a technical effect as stated.
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3.3. Impact on downstream analysis
Table 1 summarizes the obtained DE results for both CM1 and CM2 matrices. The Outlier genes
columns indicate the DESeq2’s count outlier results [13]. It can be observed that the number of
count outliers in CM1 is greater than CM2. In the first case, the 6.35% of the analyzed genes
presents extreme count values, recovering 88% of them after DESeq2’s imputation strategy.
When CM2 was analyzed, the 5.5% of analyzed genes presents extreme value. From them, 95%
were recovered after imputation. This percentage represents 7% more genes than in the previous
case, improving information gain.

Table 1. Differential expression results.

Genes with counts outlier

Count matrix Detected Final DE genes
CM1 837 93 91
CM2 737 38 424

The most important impact of the proposed approach is shown in the DE genes column
in Table 1. This contains the number of DEG found with both matrices. It is observed that
the nonseparability of CM1 samples directly impacts on the number of DEG detected allows
finding only 91 genes. However, when the two outlier samples were excluded, the number of
DEG detected increases more than 465% times, achieving a total of 424 genes.

It is not enough to only compare the number of total DEG found in both cases, but also to
establish how many of these genes are shared between CM1 and CM2 results. A simple Euler
diagram was built to determine this issue. Figure 4 shows the overlap of detected DEG using
both CM1 and CM2. In addition, the circles size illustrates the greater amount of DEG found
when using CM2 (DEG2). This result suggests that the inclusion of outlier samples could causes
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information lost (78.5 % of DEG not detected) which is recovered when they are removed.
Logarthmic fold changes and adjusted p-values, of the overlapped genes (81), obtained using

343343

1010

8181

CM2 DE genesCM2 DE genes

CM1 DE genesCM1 DE genes

Figure 4. Euler diagram for differentially expressed genes found in CM1 and CM2 sets.

CM1 (x axis) and CM2 (y axis) were explored. Their corresponding scatter plots are showed
in panel a) and b) of the Figure 5. Black line indicates the identity line and allows detecting
fold changes differences. Thus, when outlier samples are removed, absolute fold changes values
were higher in both up (pink dots, above identity line) and down (cyan dots, under identity
line) regulated gene groups. Concordantly, the corresponding adjusted p-values were mostly
lower after outlier samples removal. Absolute fold change differences were significant (p-value
4.957e−7) using the Wilcoxon non-parametric test.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

p−value 4.957e−7

a)

−4

−2

0

2

−2 −1 0 1 2
CM1−logFC

C
M

2−
lo

gF
C

Fold changes comparisson

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●b)

0.00

0.01

0.02

0.03

0.04

0.05

0.00 0.01 0.02 0.03 0.04
padjCM1

pa
dj

C
M

2 DEG
●

●

up

down

adjusted p−values comparisson
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Logarithmic fold change values and b) Adjusted p-values. After outlier samples removal,the
absolute fold change values increased and the adjusted p-values decreased in both up and down
regulated gene groups.
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Outlier samples removal also impacts on functional analysis. The Figure 6 shows the
comparison between GO’s BP terms found using both count matrices. Enrichment analysis
of DEG1 yields 122 enriched BP terms, where 82 of them (67%) were also found on the 287
enriched BP terms using DEG2. This increment represents 69.29% of more enrichment when
CM2 was analyzed.

185185 40408282

CM2 GO's BP termsCM2 GO's BP terms

CM1 GO's BP termsCM1 GO's BP terms

Figure 6. Euler diagram for enriched GO’s BP terms found in CM1 and CM2 sets.

Figure 7 illustrates the enriched GO’s BP terms tree Direct Acyclic Graph (DAG). Each DAG
node represents a biological concept (term) and has several genes associated to it. The nodes
are organized in a hierarchical manner where the root is the most generic term and more specific
ones are found downstream on the DAG. In the Figure 7, green nodes are the BP terms only
enriched by DEG1, orange nodes those enriched terms from CM2 (DEG2). Those nodes that
were enriched by both DEG lists are showed in red. It is possible to observe that most of the
green nodes are closer to the tree root, thus they are more general terms than those closer to the
leave nodes. Only one green branch can be observed. On the other hand, several branches (red
and orange nodes) were obtained with DEG2 list. Terms like positive regulation of angiogenesis
and positive regulation vascular endothelial growth factor production were enriched using both
CM1 and CM2. This is because DEG related to them were in majority found using both matrices.
But, when GO’s BP terms graph is explored, several new orange branches appear when CM2

DEG were used. These new branches are related to several biological processes known to be
related to cancer, such immune response, cell differentiation, cell migration and angiogenesis.
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Figure 7. GO graph for enriched terms. In green node terms enriched only using CM1 DEG
and in orange only using CM2 DEG. In red, enriched terms using CM1 or CM2 DEG genes sets.

4. Conclusion
Experiment quality control is a crucial step that should be performed before any expression
analysis and biological interpretation.Here it is shown that simple multivariate principal compo-
nent analysis allows identifying outlier samples that hide biological information. Its utility in a
real RNAseq context was demonstrated, where under a traditional approach only 91 genes were
detected as differentially expressed, whereas the proposed approach increased this number up to
424 genes due to outlier samples removal. Functional analysis results were also improved when
the proposed approach was applied. In particular, 185 new GO’s BP terms were enriched when
outlier samples were removed. Here is demonstrated that outlier samples presence could lead
to wrong biological conclusions. In this context, experiment quality control directly impacts in
downstream analysis results. For this reason, it must not be considered neither lightly nor a
trivial step in the analysis.
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