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J L Gómez Muñoz and F Delgado
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Abstract. This paper introduces QUANTUM, a free library of commands of Wolfram
Mathematica that can be used to perform calculations directly in Dirac braket and operator
notation. Its development started several years ago, in order to study quantum random walks.
Later, many other features were included, like operator and commutator algebra, simulation
and graphing of quantum computing circuits, generation and solution of Heisenberg equations
of motion, among others. To the best of our knowledge, QUANTUM remains a unique tool in its
use of Dirac notation, because it is used both in the input and output of the calculations. This
work depicts its usage and features in Quantum Computing and Quantum Hamilton Dynamics.

1. Introduction

QUANTUM is an add-on of Mathematica (versions 8 to 10) implementing calculations in Dirac
notation [1], and allowing the end user to enter that notation using keyboard and palettes
toolbars. As a simple example, the end user can easily write and obtain the following result:

Input : |ψ〉 = α |φ1〉+ β |φ2〉 ; (1)

Expand[ |ψ〉 · 〈ψ| ]
Output : αα∗ |φ1〉 〈φ1|+ αβ∗ |φ1〉 〈φ2|+ βα∗ |φ2〉 〈φ1|+ ββ∗ |φ2〉 〈φ2|

The core of QUANTUM was constructed based on quantum information and quantum
computing applications, therefore several of the advanced commands in the current version
are restricted to discrete Hilbert spaces. The programming philosophy and implementation
of QUANTUM are depicted in the second section. QUANTUM has three main modules; the
third section describes the first one, Quantum’Notation’, implementing bra-ket notation, non-
commutative algebra of operators and commutators, and quantum measurements. The fourth
section describes the second module, Quantum’Computing’, including qubits and quantum gates
for the simulation of algorithms and the automated drawing of quantum computing circuits.
The third module in the fifth section, Quantum’QHD’, implements the Quantized Hamilton
Dynamics (QHD) approximation to the Heisenberg equations of motion. It can be used for the
simulation of physical systems such as molecules. Last section is devoted to the conclusions.
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2. Programming Philosophy and Implementation

Mathematica has a very consistent notation. For example, the standard command to graph a sine
function from 0 to π is Plot[Sin[x],{x,0,Pi}], on the other hand, to integrate that function in the
same interval the command is almost identical: Integrate[Sin[x],{x,0,Pi}]. We have implemented
the same consistent behavior in the QUANTUM commands. As an example, the commands to
obtain the bra-ket expression and the quantum computing circuit of a sequence of quantum
computing gates are almost identical, as can be seen in Figure 1. Sometimes the Dirac notation,
as it is used in books and papers of Quantum Mechanics and Quantum Computing, is not
explicit and flexible enough for the calculations [2–4]. Therefore QUANTUM generalized this
notation, as it is seen in the CNOT gate notation in Figure 1.

Figure 1. The same syntax is used to obtain a bra-ket expression and to graph the corresponding circuit.
This consistent behavior was implemented across all QUANTUM commands.

An important aspect of Quantum’Notation’ module compared with other packages [5–7]
implementing quantum computations (based on matrix notation) is the use of an algebraic
management (based on Dirac notation). The first approach could be computationally inefficient
because states and operators become typically big after tensor products. Then, matrix products
could be a slow technique compared with the algebraic, where only non-zero terms appear. There
are several outstanding aspects there: a) the natural and easier way to introduce operators and
kets, in particular for problems using a big number n of qudits (d-level quantum systems); b) the
comparative speed performance in the calculations between algebraic management O(dnlog(dn))
versus straight matrix management of calculations O(d2n), at least in the most common problems
in quantum information, which can be expressed by sparse matrices of order O(log(dn)) (despite
other packages could implement sparse matrix multiplication techniques, in QUANTUM this
process is automatic); and c) the capabilities of Mathematica to do parallel computations which
has reduced in half the QUANTUM processing time for large number of qudits in a benchmarking
for problems in Adiabatic Quantum Computation [8].

To implement QUANTUM, several advanced Mathematica techniques were used, including
the unprotection and redefinition of standard Mathematica commands like Expand and Simplify,
instead of just be included in the general commands of the tool; the use of operators without
built-in meaning, like CenterDot; and the low-level programming of Mathematica box constructs,
like RowBox, SuperscriptBox and TagBox [9].

3. Quantum Notation Module

The Quantum’Notation’ module implements the non-commutative algebra of operators,
commutators, and the Dirac bra-ket notation. It includes commands for the simulation of
quantum measurements, the calculation of partial trace, partial transpose, among others.

Figure 2 shows a hierarchy of some of the commands in this module as well as groups of
commands developed mainly based on Kets, Operators and Operations there. Thus, main basic
operations used in Dirac notation for discrete basis as qubits, qudits, operators, adjoint, scalar,
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Figure 2. Main sections developed in Quantum’Notation’ module integrating the basic aspects in Dirac
notation: bra-ket’s, operators and operations.

inner and tensor products, as well as other specific objects in the form of Bell states, Pauli
matrices and Partial Trace operations are included. One of the palettes of this module ease the
introduction of the notation containing the main elements in the module (Figure 3). Table 1
shows some of the main templates and their usage, which are entered either using the palettes
or keyboard shortcuts. There, expressions after of symbol = represent traditional writing.

Figure 3. Quantum’Notation’ palette showing the principal commands implemented in the module: bra-ket’s
and basic operations.

Thus, with these basic constructions, it is possible set and calculate states, operators,
projections, measurements, probabilities and traces from quantum objects operating on a tensor
product basis of discrete Hilbert spaces, covering lots of possibilities for quantum systems.

4. Quantum Computing Module

The module named Quantum’Computing’ includes quantum computing gates and qubits. The
bra-ket evaluation of the quantum computing gates is delayed, so that they can be used to
generate circuits, as in Figure 1, and can be also used in algebra, for example to expand them
in terms of Pauli operators. Bell states, Quantum Fourier Transform and measurements are
also included. Figure 4 shows a hierarchy of some of the commands in this module. As
in Quantum’Notation’, some palettes (Quantum Computing Kets and Quantum Computing
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Ket-Bra’s Operations

Template Example Template Example∣∣2
2̂
,2

2̂
,2

2̂
,
〉
|01̂, 02̂, 13̂〉 (2)† (|12̂〉)

† = 〈12|∣∣2
2̂

〉
·
〈
2

2̂

∣∣ |01̂〉 · 〈11̂|
∣∣2

2̂

〉
⊗
∣∣2

2̂
,2

2̂

〉
|13̂〉 ⊗ |01̂, 12̂, 〉 = |011213〉∣∣2

2̂

〉
⊗
∣∣2

2̂

〉
|01̂〉 ⊗ 〈12̂| Tr

2̂
(2) Tr1̂(|01̂, 12̂〉 〈01̂, 02̂|) = |12〉 〈02|

2 ·
∣∣2

2̂

〉
O · |12̂〉 ‖2‖ ‖ |01̂〉 ‖ =

√
〈01 | 01〉

Table 1. Some objects included in Quantum’Notation’ package and examples of their usage.

Figure 4. Main sections developed in Quantum’Notation’ module integrating the basic aspects in Dirac
notation: bra-ket’s, operators and operations.

Gates) are included to ease the introduction of the templates for those elements and commands
(Figure 5), but still each one of them can be entered with a keyboard shortcut. Table 2 reports
a group of representative templates and examples for this module.

Figure 5. Main Quantum’Computing’ palettes showing some commands implemented in the module:
computing gates, measurements and plots.

Nevertheless Quantum’Computing’ is based on computational basis from Quantum’Notation’,
the user can hold the calculations to not evolve in the final expressions on that basis, then
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Figure 6. Code and measurement outcomes table in QUANTUM for a Quantum Teleportation algorithm of
a 2-qubit state. The right-down inset is the quantum circuit plot obtained with the command QuantumPlot.

being capable to be processed by different commands to produce states, tables or plots. This
library includes tensor product templates, norms, states sums for superposition, commutators,
anti-commutators and quantum partial transpose as additional elements working together with
those in Quantum’Notation’. On those elements, additional operators or gates related with
circuit quantum computation are included. They are enriched with commands able to operate
on them to generate measurements, probability tables and circuit plots (Figure 6). Table 2
reports a group of representative templates and examples for this module. Expressions after of
symbol → are QUANTUM outputs.

Quantum’Computing’ can perform both, simple and complex calculations in Quantum
Information Processing or Quantum Computation. As a simple example, Figure 6 shows the code
to realize the traditional Quantum Teleportation algorithm [10, 11] for a general 2-qubit state.
Process begins defining the state on six qubits (st0) with state to teleport located in qubits 1 and
2. After, a state (st1) is obtained applying the common Hi and CiNOTj gates in the algorithm.
Finally, the teleportated state is obtained on the qubits 4 and 6 after of four measurements in the
qubits 1, 2, 3 and 5, in the form of a probability table with the command QuantumMeasurement
including further corrections using classical communication. Notice once again how almost the
same code under alternative commands as QuantumPlot instead of QuantumEvaluate generates
alternative outputs considered in the package (as the plot of respective quantum circuit). In
similar ways, other more complex algorithms can be developed using the gates included or other
defined by the users.

States Gates

Template Example Template Example∣∣∣β
ij,2̂,2̂

〉 ∣∣β10,1̂,2̂〉 = |0102〉−|1112〉√
2

σ
i,2̂

σ1,2̂ = σx,2 = X2∣∣±
2̂

〉
|+2̂〉 = |02〉+|12〉√

2
H

2̂
H3̂ = 1√

2
(X2 + Z2)⊗2̂

n=2̂

∣∣2
n̂

〉 ⊗2̂

n=0̂

∣∣n+ 1
n̂

〉
→ |10̂, 21̂, 32̂〉 C{2̂}[NOT

2̂
] C{1̂}[NOT 2̂] = C1NOT2

QuantumEvaluate[2] QuantumEvaluate[Z2] C{2̂}[2] C1̂[H3̂] = C1H3

→ |02̂〉 〈02̂| − |12̂〉 〈12̂|

Table 2. Some objects included in Quantum’Computing’ package and examples of their usage.
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5. Quantized Hamilton Dynamics Module

The evolution of the expected value of an observable A in the Heisenberg representation is given
by the equation of motion (EOM):

ih̄
d

dt
〈A〉 = 〈[A,H]〉 (2)

Figure 7. A particular example of Heisenberg EOM. They are coupled and form an infinite hierarchy of
equations.

Consider the averages of momentum, position and their products 〈p〉, 〈q〉, 〈p2〉, 〈q2〉, 〈pq〉, 〈p3〉,
〈p2q〉... The EOMs for their average values are coupled and, in general, form an infinite hierarchy
of equations. As an example, the EOMs for the Hamiltonian H = 1

2(p2 + q2) + aq3 are shown
in Figure 7. In order to obtain a finite hierarchy of equations, a closure procedure has to be
applied. In the Quantized Hamilton Dynamics approximation [12], the expectation values of
higher order expressions are approximated in terms of those other expectation values already
included in the hierarchy, for instance, the approximation 〈ABC〉 ≈ 〈AB〉〈C〉 + 〈AC〉〈B〉 +
〈BC〉〈A〉 − 2〈A〉〈B〉〈C〉 is one of the approximations used at second order, QHD-2. Figure 8
shows the finite QHD-2 hierarchy obtained in the example.

Figure 8. The QHD-2 closure procedure was applied to the EOM of the previous figure, resulting in hierarchy
of only five equations.

The third module of QUANTUM has several commands that allow the automatic generation
of EOM for arbitrary Hamiltonians, with or without closure (those commands were used to
generate Figures 7 and 8). Closures can be applied at orders QHD-1 (which gives classical
dynamics for the Hamiltionian), QHD-2 and QHD-3; then the module has commands to include
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the initial conditions, solve the system of equations, and generate plots of the evolution of the
expected values in time, as well as phase plots. The website of QUANTUM [1] includes examples
of the application of these commands to several physical systems, including the O-H bond of a
water molecule.

6. Conclusions

In this paper we have presented QUANTUM, a Mathematica add-on for calculations in Dirac
notation, non-commutative operator algebra, quantum computing and approximations to the
Heisenberg equations of motion. It allows the end user to input the calculations directly in the
usual notation for Quantum Mechanics, and to obtain results in the same format. This unique
characteristic has appealed to students and researchers in more than 20 countries to the best
of our knowledge. Actually some of the commands and features of QUANTUM were included
by recommendation of those users. Future work is also based on those recommendations, and
it includes modules for occupation number notation (Second Quantization and Quantum Field
Theory), angular momentum, continuous Hilbert spaces, among others.
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