This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Structural and magnetic characterization of the new GdMn1-xFexO3 perovskite material

, , and

Published under licence by IOP Publishing Ltd
, , Citation J A Cardona Vasquez et al 2016 J. Phys.: Conf. Ser. 687 012087 DOI 10.1088/1742-6596/687/1/012087

1742-6596/687/1/012087

Abstract

In this paper we presents the synthesis process of the GdMn1-xFexO3 perovskite material by conventional solid state reaction method. Crystalline phase evolution during the synthesis was studied by X-ray Diffraction (XRD) in powder of the materials, observing that the chemical reaction of the precursor oxides was significant above 1000°C. Rietveld refinement of DRX patterns shows a perovskite structure with octahedral distortions (space group Pbnm, # 62) for studied values of x (0, 0.1 and 0.2). The degree of substitution generates an increasing tendency on lattice parameters a and c, while for b is decreasing just as for the volume of the unit cell. The effect of the change in the lattice parameters directly affects the octahedral distortions, ie, with increasing degree of substitution (increased parameter c) octahedra tend to arrange one above the other aligned with the c axis. Magnetization measurements as a function of temperature were performed above room temperature between 300K and 860K with an applied field of 20Oe and below room temperature in Field Cooling (FC) and Zero Field Cooling modes (ZFC) between 4.2K and 300K with an applied field of 200Oe. Magnetic behavior above room temperature is paramagnetic for used values of x, on the other hand at low temperatures (T<30K) magnetic phase transitions associated to the apparition of an antiferromagnetic phase are observed. In addition for x=0.1 the derivative of magnetization shows a peak around 31K, associated to the ferrimagnetic transition for this material. Curie-Weiss fit reveals the antiferromagnetic (ferrimagnetic) behavior of the materials, also shows that the configurations with x=0 and x=0.2 have an effective magnetic moment very similar to the reported value of undoped material, while for x=0.1 a higher value is observed confirming the ferrimagnetic behavior of this configuration.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/687/1/012087