
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Mathematical-statistical model for predicting the
tendency of the mechanical integrity of a buried
pipeline
To cite this article: H Aponte Betancur et al 2016 J. Phys.: Conf. Ser. 687 012003

 

View the article online for updates and enhancements.

You may also like
Longest interval between zeros of the tied-
down random walk, the Brownian bridge
and related renewal processes
Claude Godrèche

-

Analysis of the Urban Renewal Strategies
with Fuzzy Delphi Approach
Shih-Yuan Liu and Pao-Kuan Wu

-

On sequences of records generated by
planar random walks
Claude Godrèche and Jean-Marc Luck

-

This content was downloaded from IP address 3.138.33.87 on 04/05/2024 at 15:32

https://doi.org/10.1088/1742-6596/687/1/012003
https://iopscience.iop.org/article/10.1088/1751-8121/aa6a6e
https://iopscience.iop.org/article/10.1088/1751-8121/aa6a6e
https://iopscience.iop.org/article/10.1088/1751-8121/aa6a6e
https://iopscience.iop.org/article/10.1088/1755-1315/545/1/012041
https://iopscience.iop.org/article/10.1088/1755-1315/545/1/012041
https://iopscience.iop.org/article/10.1088/1751-8121/ac0d6d
https://iopscience.iop.org/article/10.1088/1751-8121/ac0d6d
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstiLTG5DY_Hq5vex6Y4uGKYDR-cLd1kNhavoIEMBOILr-RgMYxPcQeTOUJkyDk0ktTVZM_CKgwZ_h6uAzFh8MT5jGMZjbFDp9Ov0O2ZhyYRy8l-i9bCJ00pRvf5uoKkm9TDxDDn9YjvAX99sUZueAlMQB40D2JPUGQpPjhaHHXKM4xkkSXsJj7iHF9Mgl4yYwNnF5wbmH29FkZVOyANCxe-KIzIv-NBeq6nU_OPkY202JtMlMzFwd_uQ_OQRkW3B8w7WUT__O82ZxWpL4XhTMYvmVZ6YzY0yB-jb1TqimfYb3oJqpKa8bXWz36HFEpEQV1Fzul6yWEAdbuEUsVu9NkQBTLgOQ&sig=Cg0ArKJSzOpQu7Yz_0oe&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Mathematical-statistical model for predicting 
the tendency of the mechanical integrity of a 
buried pipeline

H Aponte Betancur1, E vera Lopez1 and Y Pineda Triana1

1 Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

E-mail: hector.apontebetancur@uptc.edu.co

Abstract. This paper is intended to use a process model stochastic renewal to analyze the 
disintegration of the pipeline due to the time of use and service conditions, classifying the 
pipeline into segments according to the conditions to which it is exposed (temperatures, 
pressures, speed flow, environmental conditions, etc.). The model will determine the material 
wear over time, periods of renewal of the material and life chances at any time.

1. Introduction
The transport of dangerous pipeline fluids are exposed to dependent and no dependent threats
of time. The deterioration of pipeline with time is inevitable despite different coatings and
protections that help extend the life of the material used, but eventually require renovation
or change [1]. The disintegration pipeline thickness depends on many variables (temperature,
pressure, flow rate, environmental conditions, etc.) that are not easy to relate all at once [2].
This model is intended to apply to predict the wear of the material, refresh rates and probabilities
of life at any time t.

2. Wear equation
There are several factors that determine the pipeline desintegration, then it is assumed that the
rate of change of the thickness of the pipe wall is proportional to E(t) the remaining material
in time t [3]. Mathematically it can be expressed as:

dE

dt
= −λE (1)

Where E(t) = 1 − d(t)/h represents the remaining percentage of the thickness of the pipe
wall in a time t, λ > 0, a proportionality constant having wear duct over time and conditions
thereof, the minus sign represents the disintegration suffered reducing material thickness with
time. The Figure 1 represents: Pit length (Lp), maximum pit depth at a time (d), nominal wall
thickness of the pipe (h), and nominal outside diameter of the pipe (D).
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Figure 1. Corrosion parameters.

ASME B31 [4] sets a maximum length (L) of permissible sting, calculated as:

L = 1.12 ∗

√√√√((
d
h

1.1 dh − 0.15
)2 − 1

)
∗D ∗ h (2)

If Lp > L is considered the critical pitting and suggests renew the material, then the solution
of equation (Equation 1) as a function of driveability and maximum lengths to predict areas as
required by the ASME B31 [4] is taken and possibly the probability of life with respect to time
t in a process of renewal.

Solving the equation (1) is f(t) = E(t) = C0 exp(−λt), t ≥ 0, where C0 = 1, representing the
100% the thickness of the pipe wall in a time t = 0, when d(t = 0) = 0. Therefore

d(t)

h
= 1− E(t) = 1− exp(−λt) (3)

The corrosive maximum length allowed in a time t, according to the above equation and

the standard ASME B31 [4] is given by Lmax = 1.12 ∗
√[

( 1−exp(−λt)
1.1(1−exp(−λt))−0.15)2 − 1

]
∗D ∗ h,

the maximum permitted corrosive area at a time t is Amax(t) = 0.893Lmax(t)√
Dh

and the pressure

maximum (P ′) is P ′(t) = 1.1P exp(−λt), where P is the value of the relationship established by
maximum allowable pressure eleoducto.

3. Renewal processes
The pipeline has a lifespan that could be modeled by a random variable T . Once the pipeline
fails or is in poor conditions of service is removed or restructured. This process generates a
collection of random variables T1, T2, T3..., positive and independent representing the succession
of pipeline lifetimes put into operation. It is clear that whenever revive restructuring process
probabilistically.

be Qn = T1 + T2 + T3...Tn, Q0 = 0 representing the time of the n-th renewal and Nt as the
number of renewals in time t [5, 6].

The density function of the form is considered f(t) = exp(−λt) y F (t) =
∫ t
0 f(s)ds [6, 7]

representing a distribution function of the lifetimes of the pipeline.
The distribution function of Nt depends on F (t), as indicated by the equation P (Nt = n) =

exp(−λt) (λt)
n

n! [5].
The number of renewals that are made to the pipeline during a given time t, then defined

Λ(t) = E(Nt) (Expected value of the number of renewals at a time t) renewal and function that
satisfies the following proposition.

Proposition 1 Renewal function Λ(t) satisfies the Equation 1.

Λ(t) = F (t) +

∫ t

0
Λ(t− s)dF (s) (4)

Where Λ(t) = λt and F (t) = 1− exp(−λt) satisfies the Equation 4.
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3.1. Lifetimes
For this process three non-negative random variables defined: γt Remaining lifetime of the tube,
δt Time elapsed tube life and βt The total lifetime, as it is shown in Figure 2. Time remaining
life is: γt = QNt+1 − t (see Figure 2).

Figure 2. Graphic of useful life [5].

Proposition 2 For x > 0, the function h(t) = P (γt > x) = 1− P (γt < x) satisfies the renewal
Equation 1.

h(t) = 1− F (t+ x) +

∫ t

0
h(t− s)ds for x > 0 (5)

Where h(t) = P (γt > x) = exp(−λx), satisfies the Equation 4 of the previous proposition.
Lifetime elapsed is: δt = t−QNt [5].

Proposition 3 For t ∈ (x,∞), the function g(t) = P (δt > x) = 1 − P (δt < x) satisfies the
Equation 1.

g(t) = 1− F (t) +

∫ t−x

0
g(t− s)dF (s) (6)

Where P (δt < x) = 1 − exp(−λx) for 0 < x < t; if x > t then P (δt < x) = 1 and the total
lifetime is (see Figure 2): βt = γt + δt [5].

Proposition 4 The function g(t) = P (βt > x) = 1− P (βt < x) renewal satisfies the Equation
1.

g(t) = 1− F (max{t, x}) +

∫ t

0
g(t− s)dF (s) for x > 0 (7)

Where the total lifetime has the following distribution function; P (βt < x) = 1 − λ(1 +
min{t, x}) exp(−λx) [5].

4. Result
The data of Table 1 is used to apply the equations discussed above (see Equations 1-7).

Table 1. To apply the model data.

Specifications Measures Specifications Measures

Renewal Time 4 años Pit depth 0.0405 in
Diameter 16 in Pipe wall thickness 0.312 in
Length sting 0.3386 in Design pressure 1684 in
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Table 2 shows the predicted depth, length and pressure versus time t allowed by ASME.

Table 2. Prediction depth, length and maximum pressure
allowed by ASME at time t.

Time (years) Depth % Length sting (in) Pressure (psi)

4 0.130000011 46.40565441 1611.58798
5 0.159768307 15.32631443 1556.445188
7 0.216284056 5.624921409 1451.755416
9 0.268998436 3.876184499 1354.107297
12 0.341497025 2.84263713 1219.810911
15 0.406805417 2.334069374 1098.833646
20 0.501579111 1.87063979 923.274855
25 0.581210972 1.603842059 775.7647947

Table 3 shows the reliability of service life remaining, elapsed time and total for a t.

Table 3. Prediction of reliability (probability) of life.

Time (years) Λ(t) P (γt > x) P (δt < x) P (βt < x)

4 0.139262068 0.869999999 0.130000001 0.977369912
5 0.174077585 0.840231706 0.159768294 0.966625503
7 0.243708619 0.783715961 0.216284039 0.93975967
9 0.313339653 0.731001584 0.268998416 0.906346803
12 0.417786204 0.658502999 0.341497001 0.845437856
15 0.522232755 0.59319461 0.40680539 0.773389741
20 0.69631034 0.498420919 0.501579081 0.633282533

5. Conclusions
This model predicts the percentage of pit depth, lengths, pressures allowed by ASME and likely
lifespan of the pipeline at a time t.

These equations can generate a permanent monitoring with respect to the likelihood of failure
of transmission lines mitigating risk in the pipeline.
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