This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification
Brought to you by:
Paper The following article is Open access

Gravitational mass and Newton's universal gravitational law under relativistic conditions

, and

Published under licence by IOP Publishing Ltd
, , Citation Constantinos G Vayenas et al 2015 J. Phys.: Conf. Ser. 633 012033 DOI 10.1088/1742-6596/633/1/012033

1742-6596/633/1/012033

Abstract

We discuss the predictions of Newton's universal gravitational law when using the gravitational, mg, rather than the rest masses, mo, of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, mi, and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (mPl/mo)2 where mpi is the Planck mass (ħc/G)1/2. We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/633/1/012033