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Abstract. By using the variational cluster approximation and cluster perturbation theory,
we investigate the magnetism and single-particle excitations of a periodic Anderson model on
the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely,
graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on
impurity sites) with showing that the ground state is ferrimagnetic for any U > 0. We then
calculate the single-particle excitations and show that the single-particle excitations are gapless
and exhibit quadratic dispersion relation near the Fermi energy.

1. Introduction
Recently, a series of hydrogenated graphene [1, 2] attracts increasing attention because of
its potential rich physics. A first-principles calculation based on density functional theory
(DFT) has predicted that the single-side hydrogenated graphene, called graphone, becomes
a ferromagnetic semiconductor with a small indirect gap [3]. Other DFT based study has
suggested that the single-side hydrogenated and fluorinated graphenes can be a quantum spin
liquid [4]. Possible increase of the spin-orbit coupling due to the sp3 lattice distortion has been
also discussed [5, 6]. However, electron correlation effects on the hydrogenated graphene beyond
the DFT based calculations have not been investigated so far.

Here, we employ the variational cluster approximation (VCA) [7] and the cluster perturbation
theory (CPT) [8] to investigate electron correlation effects on graphone by modeling it as a
half-filled periodic Anderson model on the honeycomb lattice. We find that the ground state is
ferrimagnetic (FM). The calculation of the magnetic moment as a function of electron correlation
U at zero temperature shows that the magnetic moment in the weak-coupling region is naturally
related to the flat-band FM. We also calculate the single-particle excitations and show that the
low-energy excitations display the gapless quadratic dispersion.
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Figure 1. The periodic Anderson model on the honeycomb lattice. Carbon sites on A- and
B-sublattices are denoted as green and red circles, respectively, and hydrogen sites are denoted
as yellow circles. The shaded regions represent the 4-site (6-orbital) clusters used in the VCA
and the CPT calculations. The arrows indicate primitive translational vectors for the cluster.
The primitive translational vectors of the honeycomb lattice are also denoted by d1 and d2.
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Figure 2. The Brillouin zone of the honeycomb lattice. Γ, M , K, and K ′ points are denoted
as dots. Here Γ = (0, 0) and M = 4π/3(0,

√
3/2). The thick triangle connecting Γ, M , and K

points represents the momentum path used in Figs. 3(a) and (b).

2. Model
2.1. Periodic Anderson model
We consider a periodic Anderson model on the honeycomb lattice defined as

H = H0 + ϵH
∑
i,σ

niσH + U
∑
i

ni↑Hni↓H , (1)

where
H0 = −t

∑
⟨i,j⟩,σ

c†iσAcjσB − t
∑
i,σ

c†iσAciσB + tsp
∑
i,σ

c†iσBciσH +H.c., (2)
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Figure 3. (a) The non-interacting tight-binding dispersion relations E−
k , E

flat
k , and E+

k with
tsp/t = 1 (red solid lines). The non-interacting tight-binding dispersion relations for pure
graphene model are also shown (blue dashed lines). (b) The orbital-resolved spectral weights
wflat
kA , wflat

kB , and wflat
kH for the flat band Eflat

k in the non-interacting limit with tsp/t = 1. The
results are shown along the path in the momentum space given in Fig. 2.

c†iσα is the electron creation operator with spin σ (=↑, ↓) and orbital α (= A,B,H) in the i-th

unit cell, and niσα = c†iσαciσα. Here, orbital A (B) denotes carbon pz orbital on A (B)-sublattice
of the honeycomb lattice and orbital H indicates hydrogen s orbital [see Fig. 1(a)]. The sum in
the first term of Eq. (2), indicated by ⟨i, j⟩, runs over all pairs of nearest-neighboring unit cells.
The first and second terms represent the hopping between the nearest-neighboring carbon sites
with the hopping integral t, forming the conduction bands. tsp is the hybridization between the
hydrogen “impurity” site and the carbon site on B-sublattice. ϵH is the on-site potential energy
and U is the on-site Coulomb repulsion of the hydrogen sites. This is the simplest model for
graphone by implicitly assuming the hopping integral t in Eq. (2) as the renormalized one due
to electron correlations in carbon sites [9, 10]. We consider the particle-hole symmetric case
with ϵH = −U/2, in which the electron density n is exactly 1 for any U values. We also set
t = tsp = 1 and ℏ = kB = 1.

2.2. Non-interacting limit
In the non-interacting case with ϵH = 0, the Hamiltonian in the momentum space can be written
as

H0 =
∑
k,σ

(
c†kσAc

†
kσBc

†
kσH

) 0 γk 0
γ∗k 0 tsp
0 tsp 0

 ckσA
ckσB
ckσH

 , (3)

where c†kσα is the Fourier transform of the real-space creation operator and

γk = −t
(
1 + eik·d1 + eik·d2

)
(4)

is the matrix element between carbon pz orbitals on A and B sublattices. Here,

d1 =

(
1

2
,

√
3

2

)
, d2 =

(
−1

2
,

√
3

2

)
, (5)
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are primitive translational vectors of the honeycomb lattice (Fig. 1). Notice that, at k = K and
K ′ points defined as (see also Fig. 2)

K =
4π

3

(
1

2
,

√
3

2

)
, K ′ =

4π

3

(
−1

2
,

√
3

2

)
, (6)

γk becomes zero, i.e., γK = γK′ = −t(1+ e2πi/3+ e4πi/3) = 0. The non-interacting tight-binding
band dispersion relations are given as

Eflat
k = 0, (7)

E±
k = ±

√
|γk|2 + t2sp. (8)

We thus find that H0 has a flat band just at the Fermi energy EF = 0. It also should be noted
that the massless Dirac electronic dispersion is absent in the non-interacting limit [see Fig. 3(a)].
The orbital-resolved spectral weights for the flat band are given as

wflat
kA = ⟨ϕflat

k |c†kAσckAσ|ϕflat
k ⟩ =

t2sp
|γk|2 + t2sp

(9)

wflat
kB = ⟨ϕflat

k |c†kBσckBσ|ϕflat
k ⟩ = 0 (10)

wflat
kH = ⟨ϕflat

k |c†kHσckHσ|ϕflat
k ⟩ = |γk|2

|γk|2 + t2sp
, (11)

where |ϕflat
k ⟩ is the eigenstate of the flat band. Equations (9)-(11) indicate that the flat band

consists of A and H orbitals, but not B orbital. In particular, the flat band at K (and K ′) point
is solely consists of A orbital [see Fig. 3(b)].

The existence of the flat band Eq. (7) can be understood by recalling the Lieb’s argument on
bipartite lattices [11]. Namely, because of the imbalance of the number of sublattices, H0 has
|A| + |H| − |B| (|α|: the number of α orbitals) zero eigenvalues, forming the flat band. This
also explains why the wave functions with zero eigenvalues are contributed only from A and
H orbitals, but not from B orbital. It should be also noted here that the tight-binding model
considered here captures the characteristic features of the band structures for graphone obtained
by a spin-unpolarized DFT calculation [4].

3. Methods
3.1. Variational cluster approximation
In order to investigate a possible symmetry breaking state, we employ the VCA [7] which is
a cluster method formulated based on the self-energy-functional theory [12]. In the VCA, the
original lattice is divided into disconnected finite-size clusters, and then variational parameters
are introduced to examine possible symmetry breaking states. Here the two-body interaction
term must be the same as the original one, whereas the one-body term can be changed [12]. The
collection of these disconnected clusters is called “reference system” and its self-energy is used
as a trial function for the grand-potential functional to be optimized based on the self-energy
functional theory.

Here, we introduce, as a variational parameter, a uniform field h′ on the hydrogen (impurity)
sites [13] described as

Hh′ = h′
∑
i

(ni↑H − ni↓H) . (12)
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The reference system Href considered is thus composed of a collection of disconnected finite size
clusters as shown in Fig. 1(a), each cluster being described by H with no hopping terms between
clusters (denoted as Hc), and Hh′ , i.e., Href = Hc +Hh′ .

In the VCA, the grand-potential functional per unit cell at zero temperature is given as [14]

Ω =
1

Lc
Ω′ − 1

NLcπ

∫ ∞

0
dx
∑
σ

∑
k̃

ln
∣∣∣det(I − Vσ(k̃)G

′
σ(ix)

)∣∣∣ . (13)

where Ω′ is the exact grand potential of the single cluster, k̃ is the wave vector defined in the
reduced Brillouin zone of the reference system, N is the number of clusters and Lc is the number
of unit cells in a cluster. The exact single-particle Green’s function of Href is denoted as G′

σ(ix)

and Vσ ≡ G′−1
σ0 − G−1

σ0 represents the difference between the one-body terms of H and Href .
We employ the exact diagonalization technique to calculate G′

σ(ix) and Ω′. The FM state is
obtained when a saddle point ∂Ω/∂h′|h′=h∗ = 0 with the lowest Ω is at h∗ ̸= 0. Notice that in
this paper we focus on the physics at zero temperature.

3.2. Cluster perturbation theory
The CPT [8] is employed to obtain the translational invariant Green’s function of the infinite

systems. In the CPT, the single-particle Green’s function Gαβ
σ (k, ω) is given as

Gαβ
σ (k, ω) =

1

3Lc

∑
i,j

(
G′−1

σ (ω)− Vσ(k)
)−1

iα,jβ
e−ik·(ri−rj), (14)

where ri denotes the location of the i-th unit cell in the cluster. Here, the momentum k can
take arbitrary value in the momentum space, and the frequency ω can take arbitrary value in
the complex-frequency space. The single-particle spectral function for α orbital with spin σ is
given as

Aαα
σ (k, ω) = − 1

π
ℑGαα

σ (k, ω + iη), (15)

where η gives the Lorentzian broadening of the spectra.

4. Results
4.1. Ferrimagnetism
By calculating the grand-potential functional Ω as a function of h′, we find that the FM state
is stabilized for U > 0. We then calculate the magnetic moment per unit cell defined as

mz =
∑
α

mzα (16)

where mzα is the magnetic moment of α orbital per unit cell which is given as [14]

mzα =
1

NLcπ

∫ ∞

0
dx
∑
σ

∑
k̃

∑
i

σzℜ
[(

G′−1
σ (ix)− Vσ(k̃)

)−1
]
iα,iα

(17)

with σz being the z component of the Pauli matrices, i.e., σz = 1(−1) for σ =↑ (↓). Figure 4
shows the calculated results of mzA, mzB, mzH , and mz as a function of U/t at zero temperature.
We find that mz = 1 within the numerical accuracy for any U . We also find that mzA > 0,
mzB < 0, and mzH > 0 as expected from the bipartite structure of the lattice. In the small U
region, mzB approaches to zero, whereas mzA and mzH approach to finite values in the non-
interacting limit. Now let us consider the magnetic moment in the non-interacting limit. Since
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Figure 4. U -dependence of the orbital-resolved magnetic moments mzA, mzB, and mzH , and
the total magnetic moment mz per unit cell. The magnetic moments in the non-interacting limit
are also shown as symbols on the vertical axis at U/t = 0.

there exists the flat band at EF, the system is unstable against the FM long-range order for any
U > 0. Assuming that the flat band is fully polarized in the non-interacting limit, the magnetic
moments in the non-interacting limit can be calculated as [see Eqs. (9), (10), and (11)]

lim
U→0

mzA =
1

L

∑
k

t2sp
|γk|2 + t2sp

≃ 0.362, (18)

lim
U→0

mzB = 0, (19)

lim
U→0

mzH =
1

L

∑
k

|γk|2

|γk|2 + t2sp
≃ 0.638, (20)

where L is the number of unit cells and the numerical values are for t = tsp = 1. The magnetic
moments calculated by the VCA indeed approach to those values with decreasing U . Notice
that a similar model on the square lattices has been recently studied in Ref. [15].

In the large U region, the magnetic moment becomes dominated by H orbital. Note that,
in the strong coupling limit, an electron in each hydrogen site is completely localized and the
RKKY interaction [16, 17, 18] between these localized spins is ferromagnetic [19], which naturally
induces the FM ground state.

4.2. Single-particle excitations
Figures 5(a)-(d) show the single-particle excitation spectra Aαα

σ (k, ω) for momentum k aroundK
point at U/t = 4. The low-energy single-particle excitations show quadratic dispersion relation
around K point, indicating massive Dirac quasi-particle excitations. Although the dispersion
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Figure 5. The single-particle excitations for U/t = 4 at the vicinity of K point near EF. (a)
Aσ(k, ω) =

∑
αA

αα
σ (k, ω), (b) AAA

σ (k, ω), (c) ABB
σ (k, ω), and (d) AHH

σ (k, ω). Here η/t = 0.01
is used. Aαα

↑ (k, ω) and Aαα
↓ (k, ω) are indicated with different colors. The region of momenta

taken in the horizontal axis is 0.2π in the K-M (K-Γ) direction from K.

relation is massive, the single-particle gap is absent at K point. We also find that the A-orbital
spectral weight at K point at EF is finite even there exists the electron correlation U in H
orbital, which also forms the flat band in the non-interacting limit. This is because the A
orbital is completely decoupled from the H orbital at K point in the non-interacting limit [see
Fig. 3(b)], thereby the electron correlation U on H orbital does not affect the spectrum of A
orbital at K point. Therefore, the single-particle gap is absent at K point even at finite U . The
same discussion holds for K ′ point. The single-particle excitation spectra in the FM state thus
exhibit point-contact massive Dirac dispersion.

5. Summary
Using the VCA and the CPT, we have studied the magnetism and single-particle excitations of
a half-filled periodic Anderson model at zero temperature. We have calculated the spontaneous
magnetization as a function of electron correlation U . In the small U region, the calculated
magnetic moments approach to those estimated from the flat-band ferrimagnetism. In the large
U region, the H orbital gives the dominant contribution to the magnetic moment. Interestingly,
the single-particle excitations in the FM state show a point-contact quadratic dispersion relation
around theK andK ′ points. So far our study has been done at zero temperature in the magnetic
state. Further study at finite temperatures in which the magnetic long-range order is destabilized
will be reported elsewhere [20].
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