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Study of spin transport in Dirac systems
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Abstract. We investigate spin Hall effect in a three-dimensional Dirac electron system. We
derive diffusion equations in the Keldysh formalism and define a spin current from a spin
diffusion equation. We solve the obtained diffusion equations in a steady state in the bulk and
find that the bulk spin Hall conductivity is non-zero, though that for the conventional spin
current is zero.

1. Introduction
Spintoronics is one of the most important fields in recent condensed matter physics. In particular,
studies of spin currents in materials with spin-orbit coupling (SOC) led to discoveries such as
intrinsic [1, 2] (and extrinsic [3]) spin Hall effect (SHE) and topological insulators [4, 5, 6].

In such materials, however, spin currents are often not conserved currents because SOC breaks
spin rotational symmetry. Conventionally, a spin current is defined as a Hermitian operator

ĵSi =
{Ŝi, ĵ}

2
, (1)

where Ŝi (i = 1, 2, 3) is the spin operator and ĵ is the electric current devided by |e|. The
spin current defined in eq.(1) is a conserved Noether current in the systems with spin rotational
symmetry. In the systems with SOC, however, this conventional spin current does not satisfy
the continuity equation and sometimes leads crucial problems [7] . Hence it is not clear whether
or not we can use the definition to each system.

Instead of using the conventional definition, we define a spin current from a spin diffusion
equation [8] in this paper. We derive the spin diffusion equation from a quantum kinetic equation
[9]. In this formalism, we do not need any assumption for the spin current operator. In order to
investigate intrinsic SHE in a spin-non-conserved system, we choose a three-dimensional semi-
metallic Dirac electron system with spin-mixing terms. We find that the spin Hall conductivity
(SHC) can be non-zero even when the conventional SHC is zero.

This paper is organized as follows. In section 2 we introduce a three-dimensional Dirac
Hamiltonian and derive its quantum kinetic equation. Then we outline the derivation to obtain
diffusion equations. In section 3 we define 16 charges which describe the transport of the system
and choose a specific form of alpha matrices. In section 4 we define a spin current and calculate
the SHC. In section 5 we briefly summarize this paper.
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2. Model and Formalism
In this section, we introduce a three-dimensional Dirac Hamiltonian. Then we derive its quantum
kinetic equation and diffusion equations in the same formalism as previous works [10]. We
consider only the effect of nonmagnetic impurities and ignore electron-electron interactions.

We investigate a 4×4 three-dimensional massless Dirac Hamiltonian with impurities

H = H0 +Himp,

H0 =

∫
dxψ†(x)v (−i∂i − eAi) α̂iψ(x),

Himp =

∫
dxψ†(x)V (x)ψ(x) =

∫
dxψ†(x)

[
u0

∑
i

δ(x− xi)

]
ψ(x), (2)

where v is the Fermi velocity, Ai is a vector potential, V (x) is a nonmagnetic impurity potential,
ψ is a four-component spinor filed, and alpha matrices α̂i obey the anticommutation relations

{α̂i, α̂j} = 2δij 1̂, (i, j = 1, 2, 3). (3)

In order to investigate a non-equilibrium state of this system, we work on the Keldysh
formalism. We start from the following equations:

ĜR(A) =

[(
Ĝ(0)

)−1
− Σ̂R(A)

]−1

, (4)[
ĜR

]−1
ĜK − ĜK

[
ĜA

]−1
= Σ̂KĜA − ĜRΣ̂K , (5)

where ĜR(A) is the retarded (advanced) Green’s function, ĜK is the Keldysh Green’s function,

and Σ̂′s are their self-energies.
First, we consider the system without an electromagnetic field. Ignoring the weak-localization

effects, we perform the disorder average in the Born approximation and obtain the foliowing
relations [10]:

ĜR,A(p, ϵ) =
1

(ϵ+ µ)− vpiα̂i ± i
2τ

, (6)

Σ̂K(x,x′) =
1

πντ
δ(x− x′)ĜK(x,x), (7)

τ =
1

πνu20ni
, (8)

where µ is the chemical potential, ν is the density of states of one band at the Fermi energy,
and ni is the density of impurities. In this approximation, eq.(5) becomes[

ϵ̂, ĜK
]
+

[
ĜK , Ĥ

]
+
i

τ
ĜK = Σ̂KĜA − ĜRΣ̂K . (9)

All we have to do is determine the Keldysh Green’s function and its self-energy in eq.(9).
In order to obtain the quantum kinetic equation, we consider the Wigner transformation of

eq.(9). The Wigner transformation of a function A(x+ δx
2 , x−

δx
2 ) is defined as

Apϵ(x, t) =

∫
d(δx)d(δt)e−ip·δx+iϵδtA

(
x+

δx

2
, x− δx

2

)
, (10)
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where x = (x, t). Applying the semi-classical approximation (See AppendixA), the Wigner
transformation of eq.(9), or the quantum kinetic equation, can be written as

∂

∂t
ĝpϵ(x, t)− i [ĝpϵ(x, t), vα̂ · p] +

1

2
{∇ĝpϵ(x, t), vα̂}+

1

τ
ĝpϵ(x, t)

=
i

τ

(
ĜR

pϵρ̂ϵ(x, t)− ρ̂ϵ(x, t)ĜA
pϵ

)
. (11)

Here we define the non-equilibrium distribution function ĝpϵ(x, t) and the density matrix ρ̂ϵ(x, t)
as

ĝpϵ(x, t) =
1

2i
ĜK(xt,pϵ),

ρ̂ϵ(x, t) =
1

πν

∫
dp

(2π)3
ĝpϵ(x, t). (12)

The details of the derivation is included in AppendixA.
The effect of a uniform static electric field can be taken by a replacement

∇ → ∇̃ ≡ ∇+ eE∂ϵ (13)

and a modification of the Wigner transformation as

Apϵ(x, t) =

∫
d(δx)d(δt)e−i(p+eA(t))·δx+iϵδtA

(
x+

δx

2
, x− δx

2

)
(14)

in eq.(11).
In the following, we outline the derivation to solve eq.(11) by iterations. We consider the

Fourier transformation of eq.(11) with respect to time. Using the following notations:

Ω ≡ ω +
i

τ
, Ep ≡ vp, α̂θϕ ≡ sinθcosϕα̂1 + sinθsinϕα̂2 + cosθα̂3,

F̂0 ≡
i

τ

(
ĜR

pϵρ̂ϵ − ρ̂ϵĜA
pϵ

)
, F̂grad ≡ −

1

2
{∇ĝpϵ, vα̂} , (15)

we can rewrite eq.(11) as

Ω ĝpϵ(x, ω) = F̂0 + F̂grad − Ep [ĝpϵ(x, ω), α̂θϕ] . (16)

Equation (16) can be formally solved as

ĝpϵ = ApωF̂0 +Bpωα̂θϕF̂0α̂θϕ + Cpω

[
α̂θϕ, F̂0

]
+ApωF̂grad +Bpωα̂θϕF̂gradα̂θϕ + Cpω

[
α̂θϕ, F̂grad

]
≡ ĝ(0)pϵ + Ĝgrad [ĝpϵ] , (17)

where

Apω = i
2E2

p − Ω2

Ω(4E2
p − Ω2)

, Bpω = i
2E2

p

Ω(4E2
p − Ω2)

, Cpω = i
−Ep

4E2
p − Ω2

. (18)

Solving eq.(17) with respect to ĝpϵ by the second order iteration and performing momentum
integration, we obtain the diffusion equation of ρ̂ϵ, which is the momentum-integral of ĝpϵ
(eq.(12)). The inverse Fourier transformation with respect to ω can be performed when we
assume Ω ∼= i/τ in eq.(18).
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3. Definition of charges
The density matrix ρ̂ϵ is a 4×4 Hermitian matrix. Every 4×4 Hermitian matrix can be
decomposed into the following 16 matrices:

1,

α̂0,

α̂i (i = 1, 2, 3),

α̂5 ≡ α̂0α̂1α̂2α̂3,

α̂µν ≡ iα̂µα̂ν (µ < ν and µ, ν = 0, 1, 2, 3, 5). (19)

Therefore the density matrix ρ̂ϵ can be witten as

ρ̂ϵ =
1

4
[nϵ1+ ρµϵ α̂µ + ρµνϵ α̂µν ] . (20)

Here we define 16 ”charges” as coefficients corresponding to 16 matrices. Using these charges,
we can derive 16 diffusion equations (to be published). For example, diffusion equations for nϵ,
ρ1ϵ , and ρ

12
ϵ can be written as

∂nϵ
∂t

=
v2τ

3
∇2nϵ −

v

3
∂xρ

1
ϵ −

v

3
∂yρ

2
ϵ −

v

3
∂zρ

3
ϵ ,

∂ρ1ϵ
∂t

=
v2τ

5
∂2xρ

1
ϵ +

v2τ

15
∂2yρ

1
ϵ +

v2τ

15
∂2zρ

1
ϵ +

2v2τ

15
∂x∂yρ

2
ϵ +

2v2τ

15
∂x∂zρ

3
ϵ

− v

3
∂xnϵ −

v

6µτ
∂yρ

12
ϵ −

v

6µτ
∂zρ

13
ϵ −

ρ1ϵ(
3τ
2

) ,
∂ρ12ϵ
∂t

=
v2τ

15
∂2xρ

12
ϵ +

v2τ

15
∂2yρ

12
ϵ +

v2τ

5
∂2zρ

12
ϵ −

2v2τ

15
∂y∂zρ

13
ϵ +

2v2τ

15
∂x∂zρ

23
ϵ

− v

6µτ
∂xρ

2
ϵ +

v

6µτ
∂yρ

1
ϵ −

v

3
∂zρ

05
ϵ −

ρ12ϵ(
3τ
2

) . (21)

We use these equations in the next section, which describe z-component SHE.
In the following, we assume that alpha matrices can be witten as

α̂i = σ̂i × τ̂1, (i = 1, 2, 3), (22)

where σi and τ1 are Pauli matrices in spin and orbital space, respectively. In this system, the
particle density N , the spin density Si, and other charge density ρa can be calculated as

N(x, t) = ν

∫
dϵ nϵ(x, t),

S1(x, t) = ν

∫
dϵ

1

2

[
−ρ23ϵ (x, t)

]
,

S2(x, t) = ν

∫
dϵ

1

2

[
ρ13ϵ (x, t)

]
,

S3(x, t) = ν

∫
dϵ

1

2

[
−ρ12ϵ (x, t)

]
,

ρa(x, t) = ν

∫
dϵ [ρaϵ (x, t)] . (23)
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4. Spin Hall effect
In this paper, we focus on z-component SHE when the electric field E = (Ex, 0, 0) is applied.
We assume that the system size is infinite in x and z directions and finite in y direction. Under
this condition, we can drop x and z derivatives. Rewriting diffusion equations (21) with eqs.(13),
(14) and (23), we obtain the following equations:

∂N

∂t
=
v2τ

3
∂2yN −

v

3
∂yρ

2
,

∂ρ1

∂t
=
v2τ

15
∂2yρ

1 +
ve(2ν)

3
Ex +

v

3µτ
∂yS3 −

ρ1(
3τ
2

) ,
∂S3
∂t

=
v2τ

15
∂2yS3 −

v

12µτ
∂yρ

1 − S3(
3τ
2

) . (24)

Here we have kept only the first order with respect to the electric field and neglected

eEx∂ϵρ
α
ϵ , (α = µ, µν), (25)

which are the second order contributions.
When jS3 is the z-component spin current and τs is the spin relaxation time,

∂S3
∂t

= −∇ · jS3 − S3
τs
. (26)

Comparing eqs.(24) and (26), we obtain

jS3
y = −v

2τ

15
∂yS3 +

v

12µτ
ρ1, (27)

τs =
3

2
τ. (28)

This is our definition of the spin current which is naturally defined from the obtained spin
diffusion equation.

In the steady state in the bulk, we can drop time and space derivatives in eq.(24). In this
case, we have

ρ1 = τveνEx. (29)

Combining eqs.(27) and (29), we obtain non-zero bulk spin current:

jS3
y =

eµ

24π2v
Ex ≡ σS3

xyEx. (30)

Here we have used ν = µ2/2π2v3 and defined the z-component SHC σS3
xy . In the system with

α̂i = σ̂i × τ̂1, the conventional spin current operator can be defined as

jS3
y =

{Ŝ3, ĵy}
2

= 0. (31)

Therefore the SHC of this system is 0 for the conventional definition. In our definition, however,
we obtain non-zero SHC

It is important to note that we do not assume the form of the spin current operator, while
the conventional spin current has no justification.
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5. Summary
In this paper, we have derived diffusion equations of a three-dimensional massless Dirac electron
system from the quantum kinetic equation. Assuming the specific form of alpha matrices
α̂i = σ̂i × τ1, we have investigated diffusion equations of the Dirac electron system in terms
of spin transport. We have defined the spin current from diffusion equations and found that the
system has a finite SHC, though the conventional SHC is zero.
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Appendix A. Semi-classical approximation
In this appendix, we derive the quantum kinetic equation in the semi-classical approximation.

The Wigner transformation of the convolution ÂB̂ is defined as[
ÂB̂

]
(xt,pϵ) ≡ A(xt,pϵ) ∗B(xt,pϵ), (A.1)

where the Moyal product ∗ is

∗ = exp

[
iℏ
2

(←−
∂ x ·

−→
∂ p −

←−
∂ p ·

−→
∂ x −

←−
∂ t
−→
∂ ϵ +

←−
∂ ϵ
−→
∂ t

)]
. (A.2)

In the semi-classical approximation, we have kept only zeroth and first order terms with respect
to ℏ. Up to this order, eq.(A.1) becomes

A(xt,pϵ) ∗B(xt,pϵ) ∼= A(xt,pϵ)B(xt,pϵ) +
iℏ
2
{A(xt,pϵ), B(xt,pϵ)}Poisson , (A.3)

where

{A(xt,pϵ), B(xt,pϵ)}Poisson =
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
− ∂A

∂t

∂B

∂ϵ
+
∂A

∂ϵ

∂B

∂t
(A.4)

is the Poisson bracket.
In the following, we consider the Wigner transformation of eq.(9) in the semi-classical

approximation. First and second terms of LHS can be written as[
ϵ̂, ĜK

]
(xt,pϵ) ∼=

[
ϵ,GK(xt,pϵ)

]
+
iℏ
2

{
ϵ,GK

}
Poisson

− iℏ
2

{
GK , ϵ

}
Poisson

=iℏ
∂GK

∂t
,[

ĜK , Ĥ
]
(xt,pϵ) ∼=

[
GK(xt,pϵ), vα̂ · p

]
+
iℏ
2

{
GK , vα̂ · p

}
Poisson

− iℏ
2

{
vα̂ · p, GK

}
Poisson

=
[
GK(xt,pϵ), vα̂ · p

]
− iℏ

2

{
∇GK , vα̂

}
. (A.5)
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The first term of RHS can be written as[
Σ̂KĜA

]
(xt,pϵ) ∼=ΣK(xt,pϵ)GA(xt,pϵ)

=

∫
d(δx)d(δt)e−ip·δx+iϵδtΣK

(
x+

δx

2
, x− δx

2

)
GA

pϵ

=

∫
d(δx)d(δt)e−ip·δx+iϵδt δ(δx)

πντ
GK

(
x, t− δt

2
;x, t+

δt

2

)
GA

pϵ

=
1

πντ

∫
d(δt)eiϵδt

i

π

∫
dϵ′dp′

(2π)3
gp′ϵ′(x, t)e

−iϵ′δtGA
pϵ

=
2i

τ
ρ̂ϵ(x, t)G

A
pϵ. (A.6)

Here we have used eq.(7) in the third line. We also obtain[
ĜRΣ̂K

]
(xt,pϵ) ∼=

−2i
τ
GR

pϵρ̂ϵ(x, t) (A.7)

in the same procedure. Finally, we obtain eq.(11).
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