PAPER • OPEN ACCESS

Dirac fermions and Kondo effect

To cite this article: Takashi Yanagisawa 2015 J. Phys.: Conf. Ser. 603012014

View the article online for updates and enhancements.

You may also like
Reappearance of the Kondo effect in serially coupled symmetric triple quantum dots
Yongxi Cheng, Jianhua Wei and Yijing Yan

Modeling the Kondo effect of a magnetic atom adsorbed on graphene Liangbo Liang, Eduardo Costa Girão and Vincent Meunier

Towards a full ab initio theory of strong electronic correlations in nanoscale devices David Jacob

Dirac fermions and Kondo effect

Takashi Yanagisawa
Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
E-mail: t-yanagisawa@aist.go.jp

Abstract

In this study, we investigate the Kondo effect induced by the s-d interaction where the conduction bands are occupied by Dirac fermions. The Dirac fermion has the linear dispersion and is described typically by the Hamiltonian such as $H_{k}=v \mathbf{k} \cdot \sigma+m \sigma_{0}$ for the wave number \mathbf{k} where σ_{j} are Pauli matrices and σ_{0} is the unit matrix. We derived the formula of the Kondo temperature T_{K} by means of the Green's function theory for Green's functions including Dirac fermions and the localized spin. The T_{K} was determined from a singularity of Green's functions in the form $T_{K} \propto \exp (-\operatorname{const} / \rho|J|)$. The Kondo effect will disappear when the Fermi surface is point like.

1. Introduction

Recently, the Dirac electron in solid state has been investigated intensively [1-6]. It is interesting to examine how the Kondo effect occurs in a system of Dirac electrons with magnetic impurities. It is not so trivial whether the Kondo effect indeed appears there. We expect significant and interesting behaviors when the localized spin interacts with the Dirac electron through the sd interaction. The Dirac Hamiltonian resembles the s-d model with the spin-orbit coupling of Rashba type [7]. In this paper we investigate the s-d Hamiltonian with Dirac electrons by means of the Green's function theory and evaluate the Kondo temperature T_{K}.

The Hamiltonian is given by $H=H_{0}+H_{s d} \equiv H_{m}+H_{K}+H_{s d}$ where

$$
\begin{align*}
H_{m} & =\sum_{\mathbf{k}}(m-\mu)\left(c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k} \uparrow}+c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k} \downarrow}\right), \tag{1}\\
H_{K} & =\sum_{\mathbf{k}}\left[v\left(k_{x}-i k_{y}\right) c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k} \downarrow}+v\left(k_{x}+i k_{y}\right) c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k} \uparrow}\right. \\
& \left.+v_{z} k_{z}\left(c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k} \uparrow}-c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k} \downarrow}\right)\right] \tag{2}\\
H_{s d} & =-\frac{J}{2} \frac{1}{N} \sum_{\mathbf{k} \mathbf{k}^{\prime}}\left[S_{z}\left(c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k}^{\prime} \uparrow}-c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k}^{\prime} \downarrow}\right)+S_{+} c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k}^{\prime} \uparrow}+S_{-} c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k}^{\prime} \downarrow}\right] . \tag{3}
\end{align*}
$$

v and v_{z} are velocities of conduction electrons, μ is the chemical potential and m is the mass of the Dirac fermion. N indicates the number of sites. We set $m=0$ so that the chemical potential μ includes $m . c_{\mathbf{k} \sigma}$ and $c_{\mathbf{k} \sigma}^{\dagger}$ are annihilation and creation operators, respectively. S_{+}, S_{-}and S_{z} denote the operators of the localized spin. The term $H_{s d}$ indicates the s-d interaction between the conduction electrons and the localized spin, with the coupling constant $J[8,9]$. J is negative, as adopted in this paper, for the antiferromagnetic interaction.

2. Green's Functions

We define thermal Green's functions of the conduction electrons

$$
\begin{align*}
G_{\mathbf{k k}^{\prime} \sigma}(\tau) & =-\left\langle T_{\tau} c_{\mathbf{k} \sigma}(\tau) c_{\mathbf{k}^{\prime} \sigma}^{\dagger}(0)\right\rangle, \tag{4}\\
F_{\mathbf{k k}^{\prime}}(\tau) & =-\left\langle T_{\tau} c_{\mathbf{k} \downarrow}(\tau) c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}(0)\right\rangle, \tag{5}
\end{align*}
$$

where T_{τ} is the time ordering operator. We note that the spin operators satisfy the following relations:

$$
\begin{align*}
S_{ \pm} S_{z} & =\mp \frac{1}{2} S_{z}, \quad S_{z} S_{ \pm}= \pm \frac{1}{2} S_{ \pm} \tag{6}\\
S_{+} S_{-} & =\frac{3}{4}+S_{z}-S_{z}^{2} \tag{7}\\
S_{-} S_{+} & =\frac{3}{4}-S_{z}-S_{z}^{2} \tag{8}
\end{align*}
$$

We also define Green's functions which include the localized spins as well as the conduction electron operators. They are for example, following the notation of Zubarev [10],

$$
\begin{align*}
\left\langle\left\langle S_{z} c_{\mathbf{k} \uparrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau} & =-\left\langle T_{\tau} S_{z} c_{\mathbf{k} \uparrow}(\tau) c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}(0)\right\rangle, \tag{9}\\
\left\langle\left\langle S_{-} c_{\mathbf{k} \downarrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau} & =-\left\langle T_{\tau} S_{-} c_{\mathbf{k} \downarrow}(\tau) c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}(0)\right\rangle, \tag{10}\\
\left\langle\left\langle S_{z} c_{\mathbf{k} \downarrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau} & =-\left\langle T_{\tau} S_{z} c_{\mathbf{k} \downarrow}(\tau) c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}(0)\right\rangle, \tag{11}\\
\left\langle\left\langle S_{-} c_{\mathbf{k} \uparrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau} & =-\left\langle T_{\tau} S_{-} c_{\mathbf{k} \uparrow}(\tau) c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}(0)\right\rangle . \tag{12}
\end{align*}
$$

The Fourier transforms are defined as usual:

$$
\begin{align*}
G_{\mathbf{k k}^{\prime} \sigma}(\tau) & =\frac{1}{\beta} \sum_{n} e^{-i \omega_{n} \tau} G_{\mathbf{k k}^{\prime} \sigma}\left(i \omega_{n}\right), \tag{13}\\
F_{\mathbf{k k}^{\prime}}(\tau) & =\frac{1}{\beta} \sum_{n} e^{-i \omega_{n} \tau} F_{\mathbf{k k}^{\prime}}\left(i \omega_{n}\right), \tag{14}\\
\left\langle\left\langle S_{z} c_{\mathbf{k} \uparrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau} & =\frac{1}{\beta} \sum_{n} e^{-i \omega_{n} \tau}\left\langle\left\langle S_{z} c_{\mathbf{k} \uparrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{i \omega_{n}}, \tag{15}
\end{align*}
$$

Using the commutation relations the equation of motion for $G_{\mathbf{k k}^{\prime} \uparrow}\left(i \omega_{n}\right)$ reads

$$
\begin{align*}
\left(i \omega_{n}-v_{z} k_{z}-m+\mu\right) G_{\mathbf{k k}^{\prime} \uparrow}\left(\omega_{n}\right) & =\delta_{\mathbf{k k}^{\prime}}-\frac{J}{2 N} \sum_{q} \Gamma_{\mathbf{q k}^{\prime}}\left(i \omega_{n}\right) \\
& +v\left(k_{x}-i k_{y}\right) F_{\mathbf{k k}^{\prime}}\left(i \omega_{n}\right) \tag{16}
\end{align*}
$$

Here we have defined

$$
\begin{equation*}
\Gamma_{\mathbf{k} \mathbf{k}^{\prime}}(\tau)=\frac{1}{\beta} \sum_{n} e^{-i \omega_{n}} \Gamma_{\mathbf{k} \mathbf{k}^{\prime}}\left(i \omega_{n}\right)=\left\langle\left\langle S_{z} c_{\mathbf{k} \uparrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau}+\left\langle\left\langle S_{-} c_{\mathbf{k} \downarrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{\tau} . \tag{17}
\end{equation*}
$$

The equation of motion for $F_{k k^{\prime}}=\left\langle\left\langle c_{\mathbf{k} \downarrow} ; c_{\mathbf{k}^{\prime} \uparrow}^{\dagger}\right\rangle\right\rangle_{i \omega_{n}}$ is also obtained in a similar way. By using the decoupling procedure for Green's functions [11-13], we can obtain a closed solution for a set of Green's functions. The Green's function $G_{\mathbf{k k}^{\prime} \uparrow}\left(i \omega_{n}\right)$ is obtained as

$$
\begin{equation*}
G_{\mathbf{k} \mathbf{k}^{\prime} \uparrow}(\omega)=\delta_{k k^{\prime}} G_{k}^{0}(\omega)-\frac{J}{2 N} G_{k}^{0}(\omega) \frac{J}{2} \Gamma(\omega) G_{k}^{0}(\omega) \frac{1}{1+J G(\omega)+\left(\frac{J}{2}\right)^{2} \Gamma(\omega) F(\omega)}, \tag{18}
\end{equation*}
$$

where the analytic continuation $i \omega_{n} \rightarrow \omega$ is carried out. We defined the following functions:

$$
\begin{align*}
G_{k}^{0}(\omega) & =\frac{\omega+\mu}{(\omega+\mu)^{2}-v^{2}\left(k_{x}^{2}+k_{y}^{2}\right)-v_{z}^{2} k_{z}^{2}}, \tag{19}\\
F(\omega) & =\frac{1}{N} \sum_{k} G_{k}^{0}(\omega), \tag{20}\\
\Gamma(\omega) & =\frac{1}{N} \sum_{k}\left(m_{k}-\frac{3}{4}\right) G_{k}^{0}(\omega), \tag{21}\\
G(\omega) & =\frac{1}{N} \sum_{k}\left(n_{k}-\frac{1}{2}\right) G_{k}^{0}(\omega), \tag{22}
\end{align*}
$$

with $m_{k}=3 \sum_{q}\left\langle c_{q \uparrow}^{\dagger} c_{k \downarrow} S_{-}\right\rangle$and $n_{k}=\sum_{q}\left\langle c_{q \uparrow}^{\dagger} c_{k \uparrow}\right\rangle$.

3. Kondo Temperature

From the Green's function $G_{\mathbf{k k}^{\prime} \uparrow}\left(i \omega_{n}\right)$, the Kondo temperature T_{K} is determined from a zero of the denominator in this formula. We consider

$$
\begin{equation*}
1+J G(\omega)=0 \tag{23}
\end{equation*}
$$

in the limit $\omega \rightarrow 0$ by neglecting higher-order term being proportional to $(J / 2)^{2}$. Let us adopt for simplicity that $v_{z}=v$ and then the dispersion is $\xi_{k}= \pm v \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}-\mu$ in three dimensions. We neglect the term of the order of J in $n_{k}=\left\langle c_{k \uparrow}^{\dagger} c_{k \uparrow}\right\rangle$. The equation $1+J G(0)=0$ results in the Kondo temperature T_{K} given as

$$
\begin{equation*}
k_{B} T_{K}=\frac{2 e^{\gamma} D}{\pi} \exp \left(-16 \pi^{2} \frac{v^{3}}{\mu^{2}} \frac{1}{|J|}\right), \tag{24}
\end{equation*}
$$

where D is a cutoff and γ is Euler's constant. We assumed that $|\mu| \gg k_{B} T_{K}$ to derive the above formula. The result shows that the Kondo effect indeed occurs in a Dirac system. We can consider the Kondo effect in two dimensions by setting $v_{z}=0$, and also the d-dimensional case in general. In d dimensions T_{K} reads

$$
\begin{equation*}
k_{B} T_{K}=\frac{2 e^{\gamma} D}{\pi} \exp \left(-\frac{8(2 \pi)^{d}}{\Omega_{d}}\left(\frac{v}{|\mu|}\right)^{d-1} \frac{v}{|J|}\right), \tag{25}
\end{equation*}
$$

where Ω_{d} is the solid angle in d-dimensional space, namely, the area of the $(d-1)$-sphere S^{d-1}.
In the limit $|\mu| \rightarrow 0$, the equation $1+J G(0)=0$ has no solution. Hence, when $|\mu|$ is small, T_{K} is reduced and vanishes. This measn that, when the Fermi surface is point like, the Kondo effect never appears because of the weak scattering by the localized spin. T_{K} shows an algebraic behavior $T_{K} \propto|\mu|^{\alpha}$ with a constant α. In three dimensions, T_{K} is proportional to μ^{2} for small $|\mu|$:

$$
\begin{equation*}
k_{B} T_{K} \simeq \frac{1}{\pi^{2}} \sqrt{\frac{14 \zeta(3)}{32}} \mu^{2} \frac{1}{v} \sqrt{\frac{|J|}{v}}, \tag{26}
\end{equation*}
$$

where $\zeta(3)$ is the Riemann zeta function at argument 3 . In d-dimensional space, this is generalized as

$$
\begin{equation*}
k_{B} T_{K} \simeq \frac{1}{\pi} \sqrt{\frac{7 \zeta(3) \Omega_{d}}{8(2 \pi)^{d}}}|\mu|^{(d+1) / 2} \sqrt{\frac{|J|}{v^{d}}} \tag{27}
\end{equation*}
$$

4. Summary

We investigated the s-d Hamiltonian with the localized spin interacting with the Dirac fermions. The Green's function method is applied to examine a singularity in Green's functions to determine the Kondo temperature T_{K}. The singularity leads to the formula of T_{K} as usual being proportional to $\exp (-$ const $/ \rho|J|)$ with the density of states ρ. The Kondo effect indeed occurs in the band of Dirac fermions and will produce singular properties in physical quantities. T_{K} vanishes when the Fermi surface is point like and shows the algebraic behavior $T_{K} \propto|\mu|^{\alpha}$ for small $|\mu|$. The term being proportional to σ_{z} like the magnetic field, which we did not have considered in this paper, is also important in the Kondo effect.

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva S V, Dubonos S V and Firsov A A 2005 Nature 438197
[2] Zhang Y, Tan Y-W, Stormer H L and Kim P 2005 Nature 438201
[3] Hsieh D, Qian D, Wray K, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452970
[4] Mitchell A K, Schuricht D, Vojta M and Fritz L 2013 Phys. Rev. B87 075430
[5] Beri B and Cooper N R 2012 Phys. Rev. Lett. 109156803
[6] Kanao T, Matsuura H and Ogata M 2012 J. Phys. Soc. Jpn. 81063709
[7] Yanagisawa T 2012 J. Phys. Soc. Jpn. 81094713
[8] Kondo J 1964 Prog. Theor. Phys. 3237
[9] Kondo J 2012 The Physics of Dilute Mgnetic Alloys (Cambridge University Press, Cambridge)
[10] Zubarev D 1960 Sov. Phys. Uspekhi 3320
[11] Nagaoka Y 1965 Phys. Rev. 138 A1112
[12] Hamann D R 1967 Phys. Rev. D158 570
[13] Zittartz J and Müller-Hartmann E 1968 Z. Phys. 212380

