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Abstract. In the paper [1] authors applied canonical transformation to water wave equation
not only to remove cubic nonlinear terms but to simplify drastically fourth order terms in
Hamiltonian. After the transformation well-known but cumbersome Zakharov equation is
drastically simplified and can be written in X-space in compact way. This new equation
is very suitable for analytic study as well as for numerical simulation. At the same time
one of the important issues concerning this system is the question of its integrability. The
first part of the work is devoted to numerical and analytical study of the integrability of
the equation obtained in [1]. In the second part we present generalization of the improved
Zakharov equation for the ”almost” 2-D water waves at the surface of deep water. When
considering waves slightly inhomogeneous in transverse direction, one can think in the spirit
of Kadomtsev-Petviashvili equation for Korteveg-de-Vries equation taking into account weak
transverse diffraction. Equation can be written instead of classical variables η(x, y, t) and
ψ(x, y, t) in terms of canonical normal variable b(x, y, t). This equation is very suitable for
robust numerical simulation. Due to specific structure of nonlinearity in the Hamiltonian the
equation can be effectively solved on the computer. It was applied for simulation of sea surface
waving including freak waves appearing.

1. Compact Zakharov equation
It is well known that the Hamiltonian describing the propagation of gravitational waves in deep
water can be represented by an infinite series expansion. Hamiltonian variables here are the
elevation of the free surface and the velocity potential at the surface. Analytical and numerical
analysis are often limited to only a few terms of the expansion up to the fourth order as usual:

H =
1

2

∫
gη2 + ψk̂ψdx− 1

2

∫
{(k̂ψ)2 − (ψx)2}ηdx+

1

2

∫
{ψxxη2k̂ψ + ψk̂(ηk̂(ηk̂ψ))}dx (1)

In the paper [1] authors applied canonical transformation to water wave equations not only to
remove cubic nonlinear terms but to simplify drastically fourth order terms in Hamiltonian. This
transformation explicitly uses the fact of vanishing exact four waves interaction for water gravity
waves for 2D potential fluid. After the transformation well-known but cumbersome Zakharov
equation is drastically simplified and can be written in X-space in compact way.
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Here P̂+
2

= P̂+ = 1
2(1 − iĤ) - projection operator to the upper half-plane. Hamiltonian in

X-space is the following:

H =

∫
b∗ω̂kbdx+

1

2

∫ ∣∣∣∣ ∂b∂x
∣∣∣∣2 [ i2

(
b
∂b∗

∂x
− b∗ ∂b

∂x

)
− k̂|b|2

]
dx. (3)

This equation is very suitable for analytic study as well as for numerical simulation. At the same
time one of the important issues concerning this system is the question of its integrability. The
next subsection is devoted to numerical and analytical study of the integrability of the equation
obtained in [1].

1.1. Analysis of integrability of the compact Zakharov equation
At first we developed the spectral algorithm to simulate the equation. Numerical integration of
the equation were carried out on the base of Runge-Kutta method 4th order accurate in time.
Then we try to find breather solutions of the equation (2). Breather is the localized solution of
the form:

b(x, t) = B(x− V t)ei(k0x−ω0t), (4)

Here k0 is the wavenumber of the carrier wave, V is the group velocity. In the Fourier space
breather can be written as follow:

bk(t) = e−i(Ω+V k)tφk, (5)

where Ω is close to
ωk0

2 . For φk the following equation is valid:

(Ω + V k − ωk)φk =

∫
T̃ k2k3kk1

φ∗k1φk2φk3δk+k1−k2−k3dk1dk2dk3. (6)

Where T̃ k2k3kk1
four-wave interactions coefficient. Localized in space breather-type solutions with

different group velocities and amplitudes were found by iterative Petviashvili method (n - is the
number of iteration):

(Ω + V k − ωk)φn+1
k = Mn

∫
T̃ k2k3kk1

φ∗k1
nφnk2φ

n
k3δk+k1−k2−k3dk1dk2dk3, (7)

Petviashvili coefficient Mn is the following:

Mn =

[
< φnk(Ω + V k − ωk)φnk >

< φnk
∫
T̃ k2k3kk1

φ∗nk1φ
n
k2
φnk3δk+k1−k2−k3dk1dk2dk3 >

] 3
2

. (8)

In the limit of NLSE breather solution (4) is nothing but well-known NLSE soliton. Numerical
simulations of collisions of such breathers were studied. If the Eq.(2) is integrable collisions
of breathers would be pure elastic. However, numerical simulation shows the collisions are not
elastic (Figs. 1 and 2). Figure 2 shows the zoomed Fig. 1. To confirm that, we study analytically
amplitudes of six-wave interactions for this equation (see for details [2]). It was found that six-
wave amplitude is not canceled for this equation. So, the kernel of six-wave element of scattering
matrix is nonzero T̃ p1p2p3q1q2q3 6= 0 on the resonant manifold:

p1 + p2 + p3 = q1 + q2 + q3

ωp1 + ωp2 + ωp3 = ωq1 + ωq1 + ωq3 (9)

Thus, 1-D Zakharov equation is not integrable. However the question about integrability of fully
nonlinear system is still unclear. Exact equation for deep gravitational waves has his own six
wave term which would change total six wave coefficient.
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Figure 1. Modulus of b(x, t) for two point
of time. Curve 1 corresponds the initial
statement (t = 0), curve 2 corresponds to
the statement after 100 breather collisions
(t 88000).
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Figure 2. Modulus of b(x, t) for two point
of time. Curve 1 corresponds the initial
statement (t = 0), curve 2 corresponds to
the statement after 100 breather collisions
(t 88000).

2. Zakharov equation for the ”almost” 2-D water waves at the surface of deep
water
The equation (2) can be generalized for almost 2D waves. Waves that slightly inhomogeneous in
the transverse direction can be considered in the spirit of the Kadomtsev-Petviashvili equation
for the Korteweg-de-Vries equation: the frequency ωk can be treated as 2D ωkx,ky , while the

four-wave interactions coefficient T̃ k2k3kk1
not dependent on y and b(x, y, t) is a function of x and

y:

H =

∫
b∗ω̂kx,kybdxdy +

1

4

∫
|b′x|2

[
i

2
(bb′∗x − b∗b′x)− K̂x|b|2

]
dxdy. (10)

Corresponding equation of motion is the following:
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For Fourier harmonics Hamiltonian can be written as following:

H=

∫
ωkx,ky|bkx,ky |2dkxdky +

1

2

∫
T
kx3kx4
kx1kx2

b∗kx1,y1
b∗kx2,y2

bkx3,y3bkx4,y4δkx1+kx2−kx3−kx4×

×δky1+ky2−ky3−ky4dkx1dkx2dkx3dkx4dky1dky2dky3dky4 (12)

Here

T
kxkx1
kx2kx3

=
θ(kx)θ(kx1)θ(kx2)θ(kx3)

16π2
[(kxkx1(kx + kx1) + kx2kx3(kx2 + kx3))− (kxkx2 |kx − kx2 | +

+kxkx3 |kx − kx3 |+ kx1kx2 |kx1 − kx2 |+ kx1kx3 |kx1 − kx3)] . (13)

θ - functions in (13) is the manifestation of waves moving in the same direction. Corresponding
evolution equation is the following:

i
∂bkx,ky
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= ωkx,kybkx,ky +

∫
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kx1kx2
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×δky1+ky2−ky3−ky4dkx1dkx2dkx3dkx4dky1dky2dky3dky4 . (14)

Let try to find solutions:
b(x, y, t) = f(y, t)ei(kx0x−ω0t) (15)

where ω0 = ωkx0 ,0.Expand ωkx,ky around ωkx0 ,0:

ωkx0 ,ky = ω0 +
ω0

4k2
x0

k2
y +O(k3

y) (16)

Substituting (15) and using (16) into Eq.(11) yields defocusing NLS equation:

i
∂f(y, t)

∂t
= − ω0

4k2
x0

∂2f(y, t)

∂y2
+ k3

x0 |f(y, t)|2f(y, t) (17)

The solutions of equation (17) are well-known (kink, grey soliton). Also, the equation (11) is
very suitable for robust numerical simulation. Due to specific structure of nonlinearity in the
Hamiltonian (10) viz. four-wave interactions coefficient T̃ k2k3kk1

not dependent on y, the equation
(11) can be effectively solved on the computer by using 1D Fast Fourier Transform in the periodic
domain x ∈ [0, 2π], y ∈ [0, 2π].

2.1. Modulational instability of monochromatic wave
Monochromatic wave

b(x, y, t) = B0e
i(kx0x+ky0y−ω0t) (18)

is the simplest solution of (11). Indeed, plugging (18) in to the equation (11) one can get the
following relation

ω0 = ωkx0 ,ky0 + k3
x0 |B0|2. (19)

We consider perturbation to the solution
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Figure 3. The growth rate γ2
kx,ky

for case

kx0 = 25, ky0 = 0, |B0| = 0.0015(µ ∼ 0.12) .
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Figure 4. The growth rate γ2
kx,ky

for case

kx0 = 25, ky0 = 0, |B0| = 0.0015(µ ∼ 0.12) .

b(x, y, t) = B0e
i(kx0x+ky0y−ω0t), (20)

or, in K-space:
b(kx, ky, t) = 2πB0δkx−kx0 δky−ky0e

−iω0t, (21)
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Perturbed solution has the following form:

b⇒ (bkx0 ,ky0 + δbkx0+kx,ky0+kye
−iΩ+t+γkx,ky t + δbkx0−kx,ky0−kye

−iΩ−t+γkx,ky t)e−iω0t. (22)

with the following condition:
Ω+ = −Ω− (23)

If we introduce steepness of the carrier wave µ2 = 2|B0|2
k3x0
ωk0

then for growth rate is

γ2
kx,ky =

1

8

ω2
k0

k4
0

k2
x

[(
1− 2

(
ky
kx

)2
)
− 6µ2

] [
µ2
(
k0 −

|kx|
2

)2

− k2
x

8

(
1− 2

(
ky
kx

)2
)]

. (24)

There is the growth rate function (24) on figures 3, 4 for the case kx0 = 25, ky0 = 0, |B0| =
0.0015(µ ∼ 0.12). The black dot (kx = 5, ky = 5) on the figure 4 corresponds to ”stable” region
and red (kx = 5, ky = 2) dot corresponds to ”modulational unstable” region.

2.2. Numerical simulation of the freak wave appearing
We have performed the numerical simulation of the freak wave formation in the framework of
equation (11). Initial condition was chosen as slightly perturbed monochromatic wave (18) with
the steepness of the carrier wave µ ∼ 0.12 and kx0 = 25 as shown in figure 5. After several

Figure 5. Initial free surface η(x, y, t = 0)
Figure 6. Extreme wave formation at the
surface η(x, y, t = 565)

hundreds of carrier wave periods we observed the freak wave formation with the steepness of
µ ∼ 0.5 (shown in figure 6).
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