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Abstract. To investigate the superconducting properties of iron pnictides we prepared planar
hybrid SNS’ junctions in thin film technology with a pnictide base electrode, a gold barrier
layer and a lead counter electrode. Our design allows characterization of the electrodes and
the junction independently in a 4-probe method. We show how both electrodes influence the
measured spectra due to their spreading resistance. While the Pb electrode has a constant
resistance above its Tc, the contribution of the pnictide electrode is clearly current-dependent
and thus it needs a more advanced method to be corrected. We present an empirical method,
which is simple to apply and allows to deal with the spreading resistance in our junctions to
recalculate the actual conductance and voltage of one junction at given temperature.

1. Introduction

Within Andreev reflection studies the conductance of a prepared junction or a point contact
is measured in dependence on the voltage. Usually the results are modelled within the BTK-
theory [1] and its possible extensions like scattering [2, 3], anisotropic order parameter [4] or non-
isotropic Fermi surfaces [5, 6]. To apply the BTK-model one has to normalize each conductance
spectrum at a given temperature by a spectrum measured at T & Tc. A problem, which occurs
especially when thin films are used is the spreading resistance of the electrodes. This leads to
a downshift of the conductance for higher temperatures, which avoids simple normalization and
results in an overestimation of gap values from the spectra [7, 8]. Additionally, the exceeding
of the critical current of one electrode causes dips in the spectra [9, 10]. In our former work
[11, 12] we clearly obtained an influence of the electrode resistances. Thus, it is necessary to
characterize both electrodes to subsequently identify the extent of influence on the junction
spectra and correct the measured data within an appropriate model.

2. Measurements setup and results

For our junctions we use a photolithographic mask design which allows to measure and
characterize each electrode and the junction, respectively, in a 4-probe technique independently
from each other. The used contacts for each of these measurements are shown in table 1. The
details of junction preparation can be found in [11].
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Figure 1. Scanning electron microscope image of a
planar SNS’ cross type junction. The numbers mark
the bonding pads. Their assignment to the electrodes
are explained in table 1.

Table 1. Device parts corresponding to bonding
pads numbers of figure 1.

setup device part current voltage

I 122 electrode 1-5 2-6
II Pb electrode 8-4 7-3
III junction 1-4 2-3

To measure the junction we used setup III from table 1 to obtain the differential resistance
over the bias current. The results are shown in figure 2. One can distinguish three different
regimes depending on the corresponding temperature. For temperatures lower than the Tc of
lead the spectrum shows a central dip with multiple shoulders for low currents. The resistance for
high currents saturates at 1Ω. For increasing temperatures jumps in the resistance occur, which
correspond to the critical current of the counter electrode. At 7.5K the measured spectrum shows
no jumps any more and it is shifted parallel by ≈1Ω upwards. The general shape stays nearly
unchanged except for features caused by the gap of lead in the low temperature measurements.
This additional 1Ω is due to the resistance of the lead counter electrode.
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Figure 2. Differential resistance versus
bias current of a junction at temperatures
between 4.2K and 23.0K.
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Figure 3. Differential resistance versus bias
current of the Ba-122 base electrode of the
same junction at temperatures between 4.2K
and 23.0K.

By increasing the temperature further one can see an additional rise of the resistance for high
currents. As can bee seen, the resistance in the normal state is about 2.8Ω. This means, the
Ba-122 base electrode causes another 0.8Ω resistance in the junctions spectrum. The rise in
resistance increases, leading to peaks at special current values and for even higher currents a
decrease of resistance, which closes asymptotically to the normal state value. Additionally, by
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increasing temperature the shape around zero current changes from a ”u-shaped” to more ”v-
shaped” or mathematically from a convex function to a concave one.
By switching to setup II of table 1 one can characterize the lead counter electrode. The
differential resistance for T ≤ Tc shows zero resistance up to a critical current. At this critical
current jumps occur at the same currents as the jumps in the junction’s resistance when the
measurement is done at the same temperature and the same bias direction. This is necessary
because of the hysterical behaviour of the electrodes curve. For I ≥ Ic the differential resistance
has a constant value, for a fixed T > Tc it is current independent, too, but slightly increases
with temperature.
On the same junction we can switch the electrical contacts to setup I of table 1 to measure
the behaviour of the Ba-122 base electrode at each temperature used for the junction’s
characterization. A typical behaviour visible in figure 3 is the occurrence of peaks in the
differential resistance, which are mainly caused by flux flow and pinning but also possibly
influenced by iron buffer layers [13]. The height and the current position decrease with increasing
temperature. One can identify these peaks in figure 3 with those in figure 2, because at given
temperature the current position of one peak is the same in both figures. This fact together
with the change from ”u-shaped” to ”v-shaped” current dependence of the differential resistance
gives strong evidence of an influence of the Ba-122 electrode to the measured junction spectra.
The resistance of the electrode increases from zero to 16Ω when increasing the temperature
from 4.2K to 23K.

3. Model

The correction algorithm we use is based on the one described in [10]. For the constant resistance
of lead, this is just subtracted from the the measured junction resistance. In the same way the
voltage of the junction is corrected by subtracting the Pb electrode’s resistance times the bias
current from the measured voltage. The value of this resistance can easily be obtained from
figure 2 as the first up shift of 1Ω.
For the Ba-122 electrode in contrast to [10] we do not assume a constant spreading resistance
but use its measured (current dependent) resistance characteristics. The extent of the influence
rE := ∆Rjunction/∆R122 can be obtained by comparing the raise of the normal resistance with
temperature in figure 2 and figure 3. As aforementioned, in the shown example ∆Rjunction =
0.8Ω while ∆R122 = 16Ω, thus giving rE = 5%. Now the actual voltage and resistance of the
junction can be calculated by subtracting the measured resistance dependence of the Ba-122
electrode times rE from the measured voltage and resistance, respectively for each temperature:

Vcorr = Vmeas − I · RPb − rE ·R122(I) · I (1)
(

dV

dI

)

corr

=

(

dV

dI

)

meas

−RPb − rE · R122(I) (2)

4. Corrected data

The analysis of a superconductor order parameter is performed in the presentation of differential
conductance versus voltage as shown in figure 4a. One can see, that the conductance for high
voltages at T =4.2K goes to 1Ω−1 corresponding to the resistance of 1Ω in figure 2. For higher
temperatures one can see the influence of the electrode’s resistance by a downshift of the high
voltage value lowering as well as broadening of the central conductance peak. While the lowering
of the peak and the downshift are connected to a loss of conductance the broadening is due to
additional voltage at the electrodes. By using equation (2) to correct the conductance and (1)
to correct the voltage one gets the actual values of the junction at each temperature without
the influence of the electrode. The obtained spectra are shown in figure 4b. By comparing
both spectra before and after the correction one can see, that there is of course no difference
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Figure 4. Differential conductance of the same junction as figure 2 as measured (a) and
corrected with equations (1) and (2) as described in the text (b) for 4.2K, 8.0K, 12.2K, 16.6K,
20.9K and 23.0K.

at T =4.2K but a noticeable difference for higher temperatures. Now all conductance curves
merge at the same value of G ≈ 1.0Ω−1 at large voltage and the central peak broadens no more
but stays nearly constant in width by changing temperature from 4.2K to 8.0K. There is still a
loss in its height but this is natural due to the transformation from a SNS’ junction to a SNN’
junction by exceeding the critical temperature of lead.
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