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Abstract. Semi-supervised learning (SSL) stands out for using a small amount of labeled points for
data clustering and classification. In this scenario graph-based methods allow the analysis of local and
global characteristics of the available data by identifying classes or groups regardless data distribution and
representing submanifold in Euclidean space. Most of methods used in literature for SSL classification
do not worry about graph construction. However, regular graphs can obtain better classification accuracy
compared to traditional methods such as k-nearest neighbor (kNN), since kNN benefits the generation of
hubs and it is not appropriate for high-dimensionality data. Nevertheless, methods commonly used for
generating regular graphs have high computational cost. We tackle this problem introducing an alternative
method for generation of regular graphs with better runtime performance compared to methods usually find
in the area. Our technique is based on the preferential selection of vertices according some topological
measures, like closeness, generating at the end of the process a regular graph. Experiments using the
global and local consistency method for label propagation show that our method provides better or equal
classification rate in comparison with kNN.

1. Introduction
Semi-supervised learning (SSL) uses large amount of unlabeled data and available labeled data to build
classifiers applyied to real problems. As SSL requires less human effort and gives higher accuracy, it is
of great interest [10], [2]. Among the current SSL methods, graph based approaches have emerged and
highlighted, specially, when no parametric information is available about the data distribution.

Several graph-based methods were developed and much of them are similar to each other. Zhu (2005)
[10] arguments that it is more important to construct a good graph than to choose among the methods.
However, graph construction is not a well studied area. Only recently, the issue of graph construction
has received attention [8], [4], [5].

The most common method used for graph construction is neighbor graphs, for example k-Nearest
Neighbors (kNN) graph, where each item is connected to its k nearest neighbors under some distance
measure. As kNN method greedily connects the k nearest neighbors to each vertex and may return graphs
where some vertices have more than k neighbors, Jebara et al. (2009) [4] proposed the b-matching,
which ensures the graph is regular (every vertex with b neighbors) and by experimental results suggest
that a regular graph can achieve better classification results compared to kNN. Huang and Jebara (2007)
[3] developed an implementation based on belief propagation, but the guaranteed running time of the
implementation is O(bn3). In some cases, like in the work of Ozaki et al. (2011) [6], building a b-
matching graph is inviable in terms of computational cost.

In the supervised context, nearest neighbor classification does not work properly in high-dimensional
space. Radovanovic et al. (2010) [7] argue that this happen because a hub is an example close to many
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other examples in the (high-dimensional) example space. They state that such hubs inherently emerge in
high-dimensional data as a side effect of the “curse of dimensionality”. Ozaki et al., (2011) [6] extend
this argument and made an observation that a hub in the data space also makes a hub in the kNN graph,
since kNN graph construction greedily connects a pair of vertices, if the corresponding vertex is among
the k closest neighbors of the other example in the original space.

To test this hipotesis, that regular graph can be better for SSL, we introduce a new method for
generation of graphs with no hubs. Our method has quadratic time complexity, as kNN algorithm.
To evaluate if this technique is better than other that generates hubs, like kNN, we compare the
classification accuracy between them using Local and Global Consistency (LGC) algorithm [9] for the
label propagation task. The classification results from UCI [1] and Chapelle [2] data sets show the
presented method achieves results better or equal than kNN method.

The remainder of this paper is organized as follows. Section 2 defines basic concepts. Section 3
provides the details of the graph construction method introduced and the experimental validation results
for the algorithm on benchmark datasets. Concluding remarks are then provided in Section 4.

2. Definitions
Given a set of n examples, X = {x1, . . . , xn}, semi-supervised classification methods utilize l labeled
examples {(x1, y1), . . . , (xl, yl)} and the remaining u = n− l unlabeled examples {xl+1, . . . , xl+u} to
infer the missing labels {yl+1, . . . , yl+u} corresponding to the unlabeled examples. For using a graph-
based algorithm it is necessary the estimation of a weighted undirected sparse graph G derived from the
input data X . In this paper we are interested in how to construct a regular graph from X .

A graph G = (V,E) is formed by a set V of vertices (nodes) and a set E of edges (links) that connect
pairs of vertices. The cardinality of V is usually denoted by n, the cardinality of E by m. If two vertices
are joined by an edge, they are adjacent and we call them neighbors. Often it is useful to associate
numerical values (weights) to the edges or vertices of a graph G. Edge weights can be represented as a
function w : E → < that assigns to each edge e ∈ E a weight w(e). In the context of this work, edge
weights describe similarity between the adjacent vertices.

A graph G can be described by the adjacency matrix P , a N × N square matrix whose entry
pij (i, j = 1, . . . , N) is equal to 1 when the link pij exists, and 0 otherwise. The degree di of a node i is
the number of edges incident with it, and is defined in terms of the adjacency matrix P as di =

∑
j∈N pij .

If a node has a degree much bigger than the others nodes, it is called hub. The averaged degree for a
network is defined as 〈d〉 = 1

N

∑
n∈N dn. Graph-based methods are in general transductive, that means

it only works on the labeled and unlabeled training data, and not handle unseen data.

Algorithm 1 Sequencial kNN method
input: data base X , kmax

symbols: P - adjacency matrix; R - set of vertices order by a relevance criterium;
G - set of vertices degree initialized as G : [0, . . . , 0]1×N

1: compute kNN← getK-NearestNeighbor(X)
2: compute R← getOrderByRelevance(X)
3: vi, vj , k = 1
4: repeat
5: vi ← getNextNode(R)
6: vj ← getNearestPossibleNeighbor(vi, k, kmax, kNN)
7: if vj 6= NULL
8: connect(P , vi, vj , G)
9: else

10: k ← k + 1
11: until ∃ vi | G(vi) < kmax

12: output: P
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3. Regular graph construction
We introduce a new method for regular graph construction called Sequencial kNN (S-kNN). The method
consists in create connections incrementaly, from k = 1 to a maximum kmax value. In the process a
vertex is chosen by a relevance criterium and establish a connection with the disponible nearest neighbor.
The relevance criterium order the vertices by a Complex Network measure. Here we use the measure
closeness: Ci =

1∑
xj∈V ‖xi−xj‖ , where ‖ . ‖ is some distance kernel, and we use Euclidian distance.

Algorithm 1 describes the steps for the graph construction. After computing the k nearest neighbors
vector for the vertices and order it by a relevance criterium, we take vertices from the ordered vector and
try to connect each vertex to the nearest neighbor into the kmax neighbors, that have a degree smaller
than k. If it is not possible, we increment k and then, we repeat the process. The algorithm ends when
all the vertices have degree bigger or equal than kmax. If it does not happen, the vertex that have degree
smaller than kmax will connect to the k nearest neighbor with smallest degree. The complexity is the
same as kNN algorithm.

The experiments were carried out on ten data sets. The first seven are from UCI Machine Learning
Repository [1] and the last three are from Chapelle et al. (2006) [2]. For USPS, DIGIT1 and COil2 we
apply Principal Component Analysis (PCA) to all data sets reducing the dimensions to 50. The matrix
was symmetrized as follows Pij = max(Pij , Pji). To generate the weighted graph W we use the binary
weighting approach, where W = P . The labeled points was randomly selected from all the points. The
parameter kmax was varied from 1 to 20. Averaged classification accuracy of 30 runs is used as the
evaluation measure and the results are shown in Table 1.

Table 1. Averaged accuracy with different labeled points.
Data set (# labeled points) # Instances # Atributes # Classes % Accuracy kNN % Accuracy S-kNN

Zoo (7) 101 16 7 72.489 ± 11.614 76.361 ± 9.59
Zoo (21) 74.875 ± 5.239 73.4 ± 4.75
Iris (3) 150 4 3 89.918 ± 4.78 91.931 ± 4.581
Iris (9) 89.177 ± 6.732 90.226 ± 8.048

Glass (6) 214 9 6 37.115 ± 8.125 37.894 ± 7.895
Glass (18) 46.448 ± 6.072 47.969 ± 7.434

Breast Cancer(2) 286 9 2 96.279 ± 1.192 96.755 ± 0.698
Breast Cancer (6) 91.535 ± 8.336 94.322 ± 4.51

Ecoli (8) 336 7 8 67.903 ± 8.663 66.283 ± 8.817
Ecoli (24) 76.367 ± 4.835 76.809 ± 3.706

Blood transfusion(2) 748 4 2 52.788 ± 14.899 52.906 ± 17.879
Blood transfusion (6) 66.417 ± 8.902 65.425 ± 11.096

Yeast(10) 1484 8 10 29.398 ± 5.760 30.474 ± 8.434
Yeast (30) 41.490 ± 3.762 41.815 ± 4.310
USPS (10) 1500 241 2 83.543 ± 4.596 82.930 ± 3.356
USPS (100) 89.609 ± 3.169 89.516 ± 1.947
DIGIT1 (10) 1500 241 2 89.619 ± 7.488 87.225 ± 7.554

DIGIT1 (100) 97.033 ± 1.121 97.307 ± 0.683
COIL2(10) 1500 241 2 65.731 ± 5.19 65.738 ± 6.178

COIL2(100) 96.938 ± 1.95 97.297 ± 1.243

Figure 1 shows the degree distribution for S-kNN and kNN graphs built using the Breast-Cancer data
set with k = 7. We notice that S-kNN method has almost all vertices with a degree equal 7, less than
250 vertices have degree equal 8, 9, 10. It generated 2597 edges with the averaged degree equal 7.6. The
kNN method has vertices with vary different degree where less than 200 vertices have degree equal 7,
the remainig have degree from 8 to 36. It generated 3548 edges with the averaged degree equal 10.4.
Figure 2 shows a graph built using the Glass data set with k = 5. Bigger the points, bigger the vertice
degree. The kNN graph has more bigger points compared to S-kNN.

4. Conclusion
From the experiments results we notice that the introduced method achieves better or equals results than
kNN algorithm. This indicates that regular graphs also have good classification accuracy in graph-based
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Figure 1. Degree distribution for S-kNN and kNN graphs built using the Breast-Cancer data set, k = 7.

Figure 2. S-kNN and kNN graphs built using the Glass data set, k = 5.

SSL. For future work we will do statistic tests to detect if there are differences among algorithms. We
also will compare the results to b-matching method and test other measures for the relevance criterium.
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