OPEN ACCESS

Proton inelastic scattering on 32Mg

To cite this article: S Takeuchi et al 2006 J. Phys.: Conf. Ser. 49 153

View the article online for updates and enhancements.

You may also like

- <u>Search for possible one- and two-phonon</u> octupole vibrational states in ¹³⁴Sb, ¹³⁴, ¹³⁵Te, ¹³⁵Te, ¹³⁷Xe and ¹³⁹Ba near

J K Hwang, J H Hamilton, A V Ramayya et al.

- <u>Nucleon transfer reactions with radioactive</u> beams K Wimmer

- <u>Shape coexistence in the N = 19 and</u> N = 21 isotones Gerda Neyens

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.142.40.43 on 09/05/2024 at 06:57

Proton inelastic scattering on ³²Mg

S. Takeuchi¹, N. Aoi¹, H. Baba², T. Fukui³, Y. Hashimoto⁴, K. Ieki⁵,
N. Imai⁶, H. Iwasaki⁷, S. Kanno⁵, Y. Kondo⁴, T. Kubo¹, K. Kurita⁵,
T. Minemura⁶, T. Motobayashi¹, T. Nakabayashi⁴, T. Nakamura⁴,
T. Okumura⁴, T. K. Onishi⁷, S. Ota³, H. Sakurai⁷, S. Shimoura²,
R. Sugou⁵, D. Suzuki⁷, H. Suzuki⁷, M. K. Suzuki⁷, E. Takeshita⁵,
M. Tamaki², K. Tanaka¹, Y. Togano⁵, and K. Yamada¹
¹ The Institute of Physical and Chemical Research (RIKEN)

² CNS, University of Tokyo

³ Department of Physics, University of Kyoto

⁴ Department of Physics, Tokyo Institute of Technology

⁵ Department of Physics, Rikkyo University

⁶ High Energy Accelerator Research Organization (KEK)

⁷ Department of Physics, University of Tokyo

E-mail: takesato@riken.jp

Abstract. Proton inelastic scattering was applied to ³²Mg located at the island of inversion to study higher excited states. Angle-integrated and differential cross sections for $E_x = 885$ keV and 2321 keV states were obtained by measuring de-excitation γ rays and scattering angles of ³²Mg. From the present analysis, the transferred angular momentum from the ground state to 2321 keV state was close to $\Delta L = 4$ rather than $\Delta L = 3$.

Experimental studies on collective motions in ³²Mg using the Coulomb excitation have been focused on low-lying excited state [1]. In those experiments, large B(E2) value for the 2⁺ state was reported, and the disappearance of the neutron magicity N = 20 and its deformed nature were discussed. Although excitation energies for higher excited states were obtained by β - γ spectroscopy [2], the spins and parities of the states other than the 2⁺ state are still unknown. The spin and parity of 3⁻ or 4⁺ have been suggested for the 2321-keV state, but no decisive evidence have been given. In order to study collective motions in ³²Mg, the excitation energy, spin and parity of each state are important observables. In the present experiment, proton inelastic scattering was applied to ³²Mg in inverse kinematics to obtain cross sections and information on the spin and parity of each state.

A ³²Mg beam was produced by projectile fragmentation reaction of a 94-MeV/nucleon ⁴⁰Ar primary beam with a 370-mg/cm² ⁹Be production target. The ³²Mg beam was separated by using RIPS [3]. The particle identification was made event-by-event using the ΔE measured by a Si detector, and the time-of-flight (TOF) information between two foci (F2 and F3) obtained with two plastic scintillators. The energy and intensity were 56 MeV/nucleon and 700 cps, respectively. The ³²Mg beam bombarded the liquid hydrogen target [4] with a thickness of 160 mg/cm². Inelastically scattered particles were analyzed using the recently developed TOF spectrometer [5]. The obtained mass resolution for Mg isotopes was around 1.5% in FWHM. With this high mass resolution, contaminations in ³²Mg mass gate were reduced to as low as 1%. De-excitation γ rays were detected using DALI2 [6] which consists of 160 NaI(Tl) crystals

Figure 1. Doppler-corrected γ -ray spectrum.

Figure 2. Angular distributions of scattered ³²Mg particle for the γ rays from 885 keV(\bullet) and 2321 keV(\circ) states.

surrounding the secondary reaction target.

Figure 1 shows the Doppler-corrected γ -ray spectrum by ${}^{32}\text{Mg}(p, p')$ reaction in inverse kinematics. De-excitation γ rays with $E_{\gamma} = 885$ keV from known 885-keV (2⁺) state to the ground state, and $E_{\gamma} = 1436$ keV from 2321-keV state to 885-keV state are clearly seen in the spectrum. The solid curve shows the result of a fit consisting of the response functions obtained by Monte-Carlo simulation shown by dashed curves and an exponential background shown by dotted curve. The γ - γ analysis was performed to confirm the level scheme and to estimate the feeding contributions. In the analysis it was found that the high-energy γ ray with $E_{\gamma} \simeq 4300$ keV is coincident with the 885-keV γ ray. Combining above analysis, angle-integrated cross sections were obtained from the measured γ -ray yields after correcting for the detection efficiencies. The deduced angle-integrated cross sections were 45.5(55) mb and 4.2(6) mb for transitions from the ground state to the 885-keV state and to the 2321-keV state, respectively.

In order to obtain transferred angular momenta (ΔL) for these states, DWBA calculations were performed with CH89 optical parameters [7] by using a coupled channel calculation code ECIS97 [8]. Figure 2 shows the angular distributions of scattered ³²Mg particle for the γ rays from the 885-keV state to the ground state and from the 2321-keV state to the ground state. Possible spin and parity (J^{π}) of the 2321-keV state are 3⁻ or 4⁺. For $J^{\pi} = 4^+$ case, the excitations to these states were calculated by using symmetric rotational model taking into account a two-step excitation, as shown by red curves. For $J^{\pi} = 3^-$ case, the excitations to the 885-keV and 2321-keV states were calculated by using symmetric rotational model and harmonic vibrational model, respectively, as shown by blue curves. The angular distribution for transition to the 2⁺ state was well reproduced by DWBA calculation for both cases. Comparisons between the data and the calculated distributions for the 2321-keV state show that the $\Delta L = 4$ transition is favored over the $\Delta L = 3$ transition. Further detailed analysis is now in progress.

References

- [1] Church J A et al. 2005 Phys. Rev. C 72 054320 and references therein
- [2] Klotz G et al. 1993 Phys. Rev. C 47 2502 and references therein
- [3] Kubo T et al. 1992 Nucl. Instrum. Methods Phys. Res. B 70 309
- [4] Ryuto H et al. 2005 Nucl. Instrum. Methods Phys. Res. A 555 1
- [5] Aoi N et al. 2005 RIKEN Accel. Prog. Rep. 38 176
- [6] Takeuchi S et al. 2003 RIKEN Accel. Prog. Rep. 36 148
- [7] Varner R L et al. 1991 Phys. Rep. 201 57
- [8] Raynal J unpublished coupled-channel code ECIS97