This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
The following article is Open access

Investigation of the accuracy of breast tissue segmentation methods for the purpose of developing breast deformation models for use in adaptive radiotherapy

, and

Published under licence by IOP Publishing Ltd
, , Citation P Juneja et al 2014 J. Phys.: Conf. Ser. 489 012030 DOI 10.1088/1742-6596/489/1/012030

1742-6596/489/1/012030

Abstract

Realistic modelling of breast deformation requires the breast tissue to be segmented into fibroglandular and fatty tissue and assigned suitable material properties. There are a number of breast tissue segmentation methods proposed and used in the literature. The purpose of this study was to validate and compare the accuracy of various segmentation methods and to investigate the effect of the tissue distribution on the segmentation accuracy. Computed tomography (CT) data for 24 patients, both in supine and prone positions were segmented into fibroglandular and fatty tissue. The segmentation methods explored were: physical density thresholding; interactive thresholding; fuzzy c-means clustering (FCM) with three classes (FCM3) and four classes (FCM4); and k-means clustering. Validation was done in two-stages: firstly, a new approach, supine-prone validation based on the assumption that the breast composition should appear the same in the supine and prone scans was used. Secondly, outlines from three experts were used for validation. This study found that FCM3 gave the most accurate segmentation of breast tissue from CT data and that the segmentation accuracy is adversely affected by the sparseness of the fibroglandular tissue distribution.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/489/1/012030