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Abstract. We derive a class of equations of state for a multi-phase thermodynamic system
associated with a finite set of order parameters that satisfy an integrable system of hydrodynamic
type. As particular examples, we discuss one-phase systems such as the van der Waals gas and
the effective molecular field model. The case of N−phase systems is also discussed in detail in
connection with entropies depending on the order parameter according to Tsallis’ composition
rule.

1. Introduction
The mathematical description of a macroscopic physical system in thermodynamic equilibrium
requires a suitable number of state functions together with their conjugated thermodynamic
variables and a set of order parameters. The order parameters bring information about the
properties of possible phase transitions occurring within the system.

In the present paper, we are interested in the description of a general thermodynamic system
in equilibrium described by a Gibbs function Φ. Hence, the first law of thermodynamics reads
as (see e.g. [10])

dΦ(τ0, . . . , τM ) =
M∑
i=0

Λi(τ
0, . . . , τM ) dτ i + dF (1)

where Λi and τ i are, respectively, a set of state functions and thermodynamic conjugated
variables and

F =
M∑
i=0

fi(τ
i).

In particular, we have
τ0 = T, S = −Λ0 − f0(T ),

where T is the temperature of the system and S is the entropy.
The particular form of the set of functions of a single variable fi(τ

i) depends of the specific
physical nature of the system. The differential balance relation (1) implies the following closure
conditions

∂Λi
∂τ j

=
∂Λj
∂τ i

, (2)
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known as Maxwell’s relations.
Let us now assume that the present thermodynamic system can be viewed as a composite

system in thermodynamic equilibrium described by the set of order parameters θk =
θk(τ0, . . . , τM ), with k = 1, . . . , N . We also assume that the state functions depend on the
thermodynamic variables τ0, τ1, . . . , τN through the order parameters as follows

Λi = Λi(θ
1, . . . , θN ). (3)

We will look for a class of solutions to Maxwell’s relations (2) such that the order parameters
satisfy a system of integrable equations of hydrodynamic type. In this case, we will show that
the order parameters satisfy the system of N equations of state of the form

T −
M∑
i=1

(
∂S

∂θk

)−1 ∂Λi
∂θk

τ i = λk(θ1, . . . , θN ), k = 1, . . . , N. (4)

A particular class of such integrable hydrodynamic equations for the order parameters is
associated with Tsallis’ type entropy [15, 16] that in the simple case of a two-phase system
reads as

S(2)
q = θ1 + θ2 + q(θ1θ2). (5)

In this case, θ1 and θ2 are interpreted as the entropies of the component systems. Remarkably,
Tsallis’ composition rule (5) (see [15, 16] and also e.g. [1, 2]) allows to construct recursively a set
of state functions for a class of the multi-phase system possessing the multi-component equation
of state (4). Let us note that the parameter q introduced above and used throughout the paper
corresponds to Tsallis’ entropy index 1− q.

2. Integrable quasilinear systems in Riemann invariants
Let us consider a diagonal systems of PDEs of hydrodynamic type of the following form

∂θk

∂τ
= µk(θ1, . . . , θN )

∂θk

∂T
, k = 1, . . . , N. (6)

The system (6) is said to be integrable if the characteristic velocities µk satisfy the system of
equations [17]

∂s

(
∂lµ

k

µl − µk

)
= ∂l

(
∂sµ

k

µs − µk

)
, s 6= l, s 6= k, l 6= k (7)

where ∂i = ∂
∂θi

. The equations (7) are the compatility conditions for the linear systems of
equations

∂lλ
k

λl − λk
=

∂lµ
k

µl − µk
, l 6= k (8)

and
(µi − µj) ∂i∂jS = ∂iµ

j ∂jS − ∂jµi diS. (9)

The functions λi are the characteristic speeds of a symmetry defined by

∂θk

∂τ ′
= λk(θ1, . . . , θN )

∂θk

∂T
, k = 1, . . . , N,

such that θiττ ′ = θiτ ′τ and S is a density of a conservation laws, that is

∂S

∂τ
=
∂Λ

∂T
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for a suitable current K(θ1, . . . , θN ). Hence, the integrability of the system (6) is equivalent
to the linearisability via (8) or (9). In virtue of Tsarev’ theorem on the generalised hodograph
method [17], the general solution of (6) is implicitly defined by a system of algebraic equations

λk(θ1, . . . , θN ) = T + µk(θ1, . . . , θN ) τ, k = 1, ..., N (10)

involving the general solution of the linear system (8). Due to (7), this depends on N arbitrary
functions of a single variable.

Although solving the system (8) may be, in general, highly nontrivial, there exists special
classes of systems for which the general solution is found by quadratures. Such is the case of
weakly non linear or linearly degenerate systems that are characterised by the condition

∂k µ
k = 0, k = 1, ..., N. (11)

Importantly, it was conjectured in [13] that smooth initial data for weakly non linear systems
do not break in finite time.

One can prove that any linearly degenerate system (6) admits N − 1 independent weakly
nonlinear symmetries [7]:

θkτ0 = θkT , (µk(0) = 1)

θkτ1 = µk(1)(θ)θ
k
T , (µk(1) = µk, τ1 = τ)

θkτ j = µk(j)(θ)θ
k
T ,

(
∂k(µ

k
(j)) = 0

)
j = 2, ..., N − 1

for each k = 1, ..., N . For instance, in the case of the system

θkτ1 =

(
N∑
i=1

θi − θk
)
θkT (12)

the linearly degenerate symmetries are given by the formula

µk(j)(θ) = Ress=0
1

sN−j
(s+ θ1) · · · (s+ θN )

(s+ θk)
, j = 2, ..., N − 1.

The general solution of the system (8) can be written in terms of these special symmetries as

λk(θ) =
N−1∑
j=0

cj(θ)µ
k
(j)(θ), cj(θ) =

N∑
i=1

∫
W (j+1,i)

W (N,i)
ϕi(θ

i)dθi (13)

where W (j,i) are the cofactors (i, j) of the matrix

W =


µ1(0) µ2(0) ... µN(0)
µ1(1) µ2(1) ... µN(1)
... ... ... ...

µ1(N−1) µ2(N−1) ... µN(N−1)

 =


1 1 ... 1
µ1 µ2 ... µN

... ... ... ...
µ1(N−1) µ2(N−1) ... µN(N−1)

 ,

and ϕ1(θ
1),...,ϕN (θN ) are arbitrary functions of one variable. More details can be found in the

papers [7, 8, 4].
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3. Multi-phase equations of state
Let us consider the set of state functions of the form (3) depending on a set of order parameters
θk = θk(τ0, . . . , τM ), with k = 1, . . . , N and satisfying a set of equations of hydrodynamic type
of the form

∂θk

∂τ i
= µk(i)(θ

1, . . . , θN )
∂θk

∂T
, i = 0, 1, . . . ,M. (14)

In particular we have µk0 = 1, for k = 1, . . . , N , and the characteristic speeds µk(i) satisfy the

condition (8). Under the assumptions (3) and (14) the Maxwell relations (2) read as follows

N∑
k=1

(
∂Λi
∂θk

µk(j) −
∂Λj
∂θk

µk(i)

)
∂θk

∂T
= 0, k = 1, . . . , N. (15)

Assuming that the functions ∂θk/∂T are all independent, the equation above implies the
following relation between the characteristic speeds µk(i) and the thermodynamic state functions

∂Λi
∂θk

µk(j) −
∂Λj
∂θk

µk(i) = 0, k = 1, . . . , N, (16)

which can be equivalently written when i = 0 as follows

µk(i)(θ
1, . . . , θN ) = −

(
∂S

∂θk

)−1 ∂Λi
∂θk

, k = 1, . . . , N, i = 1, . . . ,M. (17)

We observe that the formula (17) provides the equilibrium thermodynamic interpretation of
a classical result due to Lax [11] that relates the characteristic speeds to the entropy and
the conjugated conserved flows in the theory of hyperbolic systems of PDEs. Applying the
Tsarev theorem, if the system of hydrodynamic type (14) is integrable, then the general solution
θk = θk(τ1, . . . , τM ), is given (locally) by the following implicit formula

T +
M∑
i=1

µk(i)(θ
1, . . . , θN ) τ i = λk(θ1, . . . , θN ) k = 1, . . . , N (18)

where λk is the general solution of (8). Hence, the order parameters θk are fully determined as
functions of the temperature T and the set of thermodynamic variables T, τ1, . . . , τM via the
multi-phase equation of state (18).

4. One-phase systems
Let us consider a macroscopic physical system characterised by its Gibbs potential Φ, entropy
S, temperature T , and the function of state Λ associated with the conjugate variable τ . The
first law of thermodynamics in differential form reads as follows

dΦ(T, τ) = −S(T, τ)dT + Λ(T, τ)dτ. (19)

Let us now assume that the entropy function is of the form

S = S (Λ(T, τ), T ) (20)

characterised by an implicit dependence on the variable τ via the state function Λ(P, T ).
Following [6], in the case of separable entropy functions of the form

S = S̃ (Λ) + f(T ), (21)
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the first law of thermodynamics is equivalent to the Riemann-Hopf type equation

∂Λ

∂τ
+ α(Λ)

∂Λ

∂T
= 0 (22)

where α(Λ) := S̃′(Λ)−1. We emphasise that important physical examples such as the van
der Waals model and the magnetic molecular field satisfy the separability condition (21) that
results from the factorisation of the partition function at the equilibrium1(see also Remark 3.1
in Ref. [6]). The general solution to the equation (22) is obtained via the classical characteristic
method and given by the implicit formula

T − α(Λ)τ − f(Λ) = 0, (23)

where f(Λ) is an arbitrary function of its argument. The relation (23) provides a family of
equations of state associated with the first law (19). Following [6], a particular equation of state
can be specified, provided a suitable finite number of isothermal/isobaric curves is known. If,
for instance, both functions α(Λ) and f(Λ) are unknown, they can be obtained by solving the
following linear system

T1 − α(Λ)τ1(Λ)− f(Λ) = 0,

T2 − α(Λ)τ2(Λ)− f(Λ) = 0,

where the graphs of functions τ1(Λ) and τ2(Λ) represent any two particular isothermal curves
respectively at temperatures T1 and T2. Functions τ1(Λ) and τ2(Λ) can be obtained, for example,
via interpolation of experimental data. If the specific form of the entropy, and consequently the
function α(Λ), is known, the above procedure applies just to a single isothermal curve and it
is equivalent to the solution of the PDE (22) with a particular initial datum. We also mention
that the equation (22) includes the inviscid Burgers equation which has been observed to be
relevant in the description of symmetry breaking in mean field spin models [9, 3].

We now consider two classical examples of equations of state that belong to the family (23).

Example 1: van der Waals model
Let us consider a gas of van der Waals type (see e.g.[5]) and identify the state function Λ with
the volume V of the gas and the conjugate variable with the pressure P . The classical van der
Waals equation of state for a real gas corresponds to the particular choice

α(V ) =
V − nb
nR

f(V ) =
na

V
− n2b

RV 2
(24)

where n is the number of moles and a and b are constant associated, respectively, with the mean
field interaction and the volume of the gas particles.

Example 2: effective molecular field model
Let us consider a magnetic system at temperature T , with magnetisation M and subject to the
external magnetic field H. Let us identify

τ ≡ H and M(T,H) ≡ Λ(T,H).

1 We thank Adriano Barra for pointing out the statistical mechanical interpretation of the separability
condition (21) for van der Waals and magnetic models.
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The equation of state for the effective molecular field model is (see [14] pag.84)

M = M0Bs

( µ̄s
κT

(H + λM)
)

(25)

where: M0 is the magnetisation at zero absolute temperature in absence of external magnetic
field, µ̄ = gµB being g the Landé factor and µB the Bohr magneton, κ is the Boltzmann constant,
s the spin and λ the interacting constant. The function

Bs(y) =
2s+ 1

2s
coth

(
2s+ 1

2s
y

)
− 1

2s
coth

( y
2s

)
is named Brillouin function. For simplicity let us consider the case of spin s = 1/2. The equation
of state (25) can be re-casted in the hodograph form (23)

H − 2κ

µ̄
arctanh

(
M

M0

)
T + λM = 0. (26)

The case of non-interacting magnetic system corresponds to the particular choice λ = 0.

5. N-phase systems and Tsallis’ composition rule
5.1. Tsallis-type entropies
The Tsallis composition rule for the entropy of the N−phase thermodynamic system described
by the set of order parameters θ1, . . . , θN , interpreted as entropies of the component systems,
reads as follows

S(N)
q = qN−1

(
N∏
k=1

(
1

q
+ θk

)
− 1

qN

)
. (27)

We observe that the limit q → 0 corresponds to the case of an additive entropy, i.e. S
(N)
0 =

limq→0 S
(N)
q =

∑N
k=1 θ

k. In the special case N = 1, the order parameter θ1 is just the entropy

function of the single phase system under consideration, i.e. S ≡ S
(1)
0 = θ1. In the case of a

two-phase system N = 2, the Tsallis’ composition rule takes the form (5). By iteration from the
two-component formula (5), the case of a three-phase system can be readily dealt with. Let us
assume, for instance, that given a certain two-phase system (θ1, θ2), the subsystem associated
to the phase θ1 can be further decomposed in the two phases, say θ1 and θ3. Then, replacing
θ1 → θ1 + θ3 + q(θ1θ3) in Equation (5), the composition formula

S(3)
q = θ1 + θ2 + θ3 + q(θ1θ2 + θ2θ3 + θ1θ3) + q2(θ1θ2θ3). (28)

follows for the three-phase system. By iterating further the procedure for an N−phase system
we obtain the general formula (27).

5.2. State functions and Tsallis’ composition rule
We would like to characterise the class of thermodynamic systems that admit the set of
state functions given by all Tsallis’ type entropies (27) for arbitrary value of the parameter
q. According to (17), let us introduce the characteristic speeds for a given state function Λ

associated with the additive entropy S
(N)
0

µk = − ∂kΛ

∂kS
(N)
0

= −∂kΛ.

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012009 doi:10.1088/1742-6596/482/1/012009

6



It is evident from (8) and (9) that integrable quasilinear systems of PDEs are characterised by
the following quantities

Γiij =
∂jµ

i

µj − µi
=

∂ijΛ

∂jΛ− ∂iΛ
= −Γjji. (29)

where µi are the characteristic velocities of the system or (due to (8)) of any of its symmetries.
As a consequence, Γiij do not depend on the particular choice of the state function Λ. Hence, all
functions of state are obtained as solutions of the following Euler-Poisson-Darboux type equation

∂ijΛ = Γiij (∂jΛ− ∂iΛ) . (30)

In particular we have the following

Proposition 1 All Tsallis’ type entropies S
(N)
q defined in (27) satisfy the equation (30) for

any value of the parameter q with

Γiij =
1

θi − θj
.

Proof. The proof straightforwardly follows from a direct calculation. Let us consider the
hydrodynamic type system associated with Tsallis’ type entropy

∂θk

∂τq
= µk(q)(θ

1, . . . , θk−1, θk+1, . . . , θN )
∂θk

∂T
, k = 1, . . . , N (31)

where

µk(q) =
∂S

(N)
q

∂θk
= qN−2

 N∏
j 6=k=1

(
1

q
+ θj

) (32)

are the characteristic speeds for the state function Λq = −S(N)
q (with conjugate variable τq).

The system (31) is an example of a linearly degenerate system as the characteristic speed of the
k − th equation is independent on the k − th order parameter.

The entropy S
(N)
q generates a hydrodynamic flow in the space of thermodynamic variable

and the conjugate variable τq can be interpreted as the q−temperature associated with it. The
q−temperature τq clearly reduces to the standard temperature T when q → 0. Although this
system admits infinitely many functions of state, a particular interesting explicit class of state
functions is associated to the weakly nonlinear symmetries (13).
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