The following article is Open access

Design improvements for an electret-based MEMS vibrational electrostatic energy harvester

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation G Altena et al 2013 J. Phys.: Conf. Ser. 476 012078 DOI 10.1088/1742-6596/476/1/012078

1742-6596/476/1/012078

Abstract

This paper presents several improvements to the design of an electret-based MEMS vibrational electrostatic energy harvester that have led to a two orders of magnitude increase in power compared to a previously presented device. The device in this paper has a footprint of approximately 1 cm2 and generated 175 μW. The following two improvements to the design are discussed: the electrical connection principle of the harvester and the electrode geometrical configuration. The measured performance of the device is compared with simulations. When exited by sinusoidal vibration, a device employing the two design improvements but with a higher resonance frequency and higher electret potential generated 495 μW AC power, which is the highest reported value for electret-based MEMS vibrational electrostatic energy harvesters with a similar footprint. This makes this device a promising candidate for the targeted application of wireless tire pressure monitoring systems (TPMS).

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/476/1/012078