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Abstract. The top quark, the heaviest known elementary particle discovered at the Fermilab
Tevatron almost twenty years ago, has taken a central role in the study of fundamental
interactions. The top quark behaves differently from all other quarks due to its large mass
and its correspondingly short lifetime. Its large mass suggests that it may play a special role in
nature. The top quark decays before it hadronizes, passing its spin information on to its decay
products. Therefore, it is possible to measure observables that depend on the top quark spin,
providing a unique environment for tests of the standard model and for new physics searches.
With approximately 10 fb−1 of luminosity delivered to each experiment at the Tevatron, and
about 20 fb−1 collected by the ATLAS and CMS experiments at the Large Hadron Collider in
the first three years of operation, top quark physics is at a turning point from first studies to
precision measurements with sensitivity to new physics processes. This report summarizes the
latest experimental measurements and studies of top quark properties and rare decays.

1. Introduction
The long search for the top quark engaged researchers at laboratories around the world for many
years, and came to a successful conclusion in February 1995 with the announcement that the
top quark had been observed in two experiments at the Tevatron proton-antiproton collider at
Fermilab [1]. The top quark was clearly present in the data and the CDF and D0 collaborations
published papers presenting overwhelming proof the top quark had been finally found. Its mass
was measured to be mt = 176 ± 13 GeV. It was expected that the top quark must exist since
1977, when its partner, the bottom quark, was discovered. The weak isospin partner of the
bottom quark had been missing since then. The top quark completed the three generation
structure of the standard model (SM).

Many years after its discovery, the top quark still plays a fundamental role in the program
of particle physics. The study of its properties has been extensively carried out in high energy
hadron collisions. However, a few important questions still remain unanswered. Why is it so
heavy? Is its mass generated by the Higgs mechanism? What is the role the top quark plays
in the electroweak symmetry breaking (EWSB) mechanism? Does the top quark play a role in
non-SM physics? Are the couplings affected? Since the shutdown of the Tevatron in September
2011, the Large Hadron Collider (LHC) is now the only place where it is possible to study the
top quark production mechanism. Before the start of the LHC, most of the measurements were
limited by the small number of top quarks available. In comparison, the LHC is a top factory
which produced one million of top quark events per experiment in 2011 alone. The LHC has
performed extremely well in the first three years of operation, and the large samples of top quarks
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collected offer the opportunity to improve the results and enter the era of precision measurements
and study rare processes. It is worth noticing that studies performed at the Tevatron and at the
LHC are sometime complementary due to the different energies and production mechanisms.

The top quark is the heaviest of all known elementary particles. With a mass close to that
of an atom of gold, it has a mass about 40 times heavier than the b-quark and it is heavier
than the W boson, the top quark decays to t → Wb with a branching fraction close to 100%.
The top quark is a fundamental particle with a mass close to the EWSB scale, and it may play
an important role in the understanding of the EWSB mechanism. Furthermore, the large top
quark mass implies a large coupling to the Higgs boson, thus establishing a privileged link to the
Higgs sector. Due to its short lifetime, the top quark decays before hadronization and it offers
the unique opportunity to study the properties of a bare quark which are preserved in the decay
chain and transferred to its decay products. The top quark has charge Q = +2/3e and weak
isospin T3 = +1/2, as the partner of the bottom quark in the third generation quark doublet.

At hadron colliders, top quarks are mostly produced in pairs through strong interactions, or
individually (single-top production) via electroweak interaction. Depending on the production
mode, the top quark therefore allows different tests of the participating forces. The top quark is
present in the higher-order diagrams and it provides - within the electroweak theory of particle
interactions - indirect constraints on the Higgs boson mass, together with the W boson mass.
Top quark production also plays an important role in many scenarios in the search for new
physics beyond the SM. Several models predict the existence of new particles decaying to (or
with large couplings to) the top quark. Therefore, the study of top quarks may provide hints to
the presence of new physics processes. Furthermore, top quark production constitutes a large
background to many of the searches for new physics processes, and it is therefore important to
understand the properties and the characteristics of top production and decay mechanisms, and
the level of precision will have an impact on the constraints on new physics processes.

For nice and complete reviews on this topic, please see Refs. [2].

2. Top quark production
Several properties of the top quark have already been studied both at the Tevatron and at the
LHC. These include studies of the kinematical properties of top production, measurement of the
production cross section, reconstruction of tt̄ pairs in the fully hadronic final states, study of τ
decays of the top quark, and reconstruction of hadronic decays of the W boson from top decays.

2.1. Top pair production
At the Tevatron top quark pairs are predominantly produced in quark-antiquark annihilation
(90%), whereas at the LHC the top quark pair production mechanism is dominated by gluon
fusion process (' 80% at

√
s = 7 TeV). This is due to the large gluon density in the proton

at small-x. The production cross section has been measured in many different final states.
Deviation of the cross section from the predicted SM value may indicate new physics processes.

In each top quark pair event, there are two W bosons and two bottom quarks. From the
experimental point of view, top quark pair events are classified according to the decay mode
of the two W bosons: the all-hadronic final state, in which both W bosons decay into quarks,
the lepton+jet final state, in which one W decays leptonically and the other to quarks, and the
dilepton final state, in which both W bosons decay leptonically. The word ”lepton” here refers
to electrons and muons, whereas τs are somehow classified differently, and they are generally
treated separately. In the dilepton channel, the final state consists of two charged leptons,
missing transverse energy, and at least two bottom jets. The branching ratio is small (5%) but
the background (mostly Z+jets) is also small, which makes the dilepton the best final state
to select a clean sample of top quark events. The all-hadronic final state has an experimental
signature with at least 6 jets, of which two are from bottom quarks, with a large background,
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mostly from QCD multi-jet events. The measurement of the cross section in this channel is
rather difficult, despite the large branching fraction (44%). The lepton+jet final state offers
a compromise with a reasonably large branching fraction (36%) and a moderate background,
mostly from W+jet events. The signature consists of one charged lepton, missing transverse
energy, and at least four jets (two of them b-jets).

Cross section measurements have been performed both at the Tevatron and at the LHC and
the accuracy of the experimental results rivals that of theory expectations [3]. At the Tevatron
(
√
s = 1.96 TeV), the top quark pair production cross section was measured very precisely

as σ = 7.50 ± 0.48(stat.+ syst.)pb [4] (6% precision). The first top quark pair candidates
at the LHC were already reported in the summer of 2010, after a few months of data-taking
at
√
s = 7 TeV. After two years, thousands of top quark events have already been selected.

Measurement of the inclusive top quark pair production cross section have been performed at
the LHC in the dilepton and lepton+jet channels using electrons and muons and provide the most
precise results. Most of the cross section measurements are already limited by the systematic
uncertainties. As an example, the cross section in the lepton+jet final state is determined with
a simultaneous maximum likelihood fit to the number of jets, the number of b-tagged jets and
the invariant mass of the tracks associated with the secondary vertex (to allow discriminating
light and heavy quark contributions). The simultaneous fit in the jet and b-jet multiplicities
allow constraining the top quark pair signal and the W+light (and heavy) flavour composition
of the background.

Measurement are also performed in the tau+lepton, tau+jets, and all-hadronic channels.
The interest of determining the cross section in all channels is mainly to check the consistency
of the measurements, and check for deviations. For example, the measurement of the cross
section in the tau+lepton (as well as the tau+jets) final state is important because a deviation
of the measured cross section from the expected value may provide a hint for new physics. The
tau+lepton channel, i.e. tt̄→ (`ν`)(τντ )bb̄ (with ` = e, µ) is of particular interest because the
existence of a charged Higgs with a mass smaller than the top quark mass mH < mt could give
rise to anomalous tau lepton production directly observable in this decay channel, via t→ H+b.
As in the other channels, the tau+lepton cross section results [5] are consistent with the cross
sections measured in the other final states, and the measurement can be used to set stringent
limits on charged Higgs production [6].

2.2. Differential distributions
The large number of top quark events collected makes also possible the measurement of
differential cross sections, dσ/dX, for the relevant variableX. For instance, variables of relevance
may be related to the kinematics of the top or tt̄ systems, such as pT ,Mtt̄, tt̄ + N jets. These
distributions may be used to validate given MC models as well as to check specific higher
order QCD calculations. Deviations could signal contribution from new physics. Differential
measurements are performed in the dilepton and lepton+jet channels, after reconstruction of
the event kinematics. The measurement of the tt̄ + N jet distribution assesses the theoretical
predictions and the simulation in the recoil of the tt̄ system and the modelling of additional quark
and gluon radiation in tt̄ production. Experimental data are needed to validate the simulated
samples and to reduce the uncertainties. The overall agreement between data and simulation is
remarkable, although the uncertainty is not yet at the level to be able to distinguish between
different signal models. The electroweak couplings of the top quark can also be studied in the
associated production to a gauge boson, such as tt̄γ, tt̄W , and tt̄Z events. Among those, the
tt̄γ production is large enough to be measured already with the available data samples. The
leading-order (LO) cross section for this process is about 1 pb at

√
s = 7 TeV, for a photon

transverse momentum pT > 8GeV. In this process, the photon is radiated from off-shell top
quarks or incoming partons, or from on-shell top quark or one of its decay products (such as the
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W). The measurement in the lepton+jet channel is performed with a template fit to signal and
background, where the templates are derived from data. Results agree well with SM predictions.

3. Top quark mass
The top quark mass mt is a fundamental parameter of the SM, and it is linked to the W and
Higgs boson masses. Through its measurement it is possible to constrain indirectly, together
with the W mass, the Higgs boson mass value.

It is measured precisely at the Tevatron with an accuracy of about 0.5%. The combined value
from the CDF and D0 experiments yields mt = 173.18 ± 0.94 GeV [7]. Direct measurements
of mt are also performed at the LHC. Thanks to the large samples of top quarks available,
stringent selections and improved analysis techniques, and to an excellent performance and
good understanding of the detectors, the precision of the LHC measurements are close to the
precision reached at the Tevatron already after the first few years of data-taking [8]. The mass is
measured in the dilepton, lepton+jet, and in the all-hadronic channels. The first measurement
at the LHC was performed in the dilepton channel [9] from the kinematic characteristics of
the events with a full kinematic analysis, and with an analytical matrix weighting technique
using distributions derived from simulated samples. The reconstruction of mt from dilepton
events leads to an under-constrained system, since the dilepton channel contains at least two
neutrinos in the final state. The lepton+jet channel provides a fully constrained system, and it
is (so far) the ”golden” channel as it yields the best accuracy in the mass measurement among
all final states. Many techniques have been used, and the most accurate single measurement
at the LHC is performed with the ”Ideogram” method, in which a constrained kinematic
fit is performed for all jet-parton assignment combinations. For each event, a likelihood is
calculated as function of the top mass (with two terms, one for signal and one for background)
corresponding to the probability for the event to be either signal or background. The signal and
background probabilities are parametrized using analytic functions, derived from simulation.
An overall likelihood is constructed by multiplying all event likelihoods. In general, the mass
measurements are limited by systematic uncertainties, and the dominant source is the jet energy
scale uncertainty, i.e. the absolute scale, ISR/FSR, fragmentation, and single particle response
in the calorimeter. In the lepton+jet channel, reduced uncertainty can be achieved with an
in-situ calibration of the W mass from the untagged jets, using the W → qq′ decays.

Direct measurements of mt rely on the reconstruction of kinematic observables sensitive to
mt. These direct measurements depend on the details of the kinematics, reconstruction, and
calibration. Furthermore, the measurement is performed in a particular definition of mt which
does not correspond to a specific renormalization scheme. Alternatively, mt can be derived
indirectly from the cross section measurement. Therefore, measurements of the cross section
are used to extract mt in a well-defined renormalization scheme, such as the pole mass (mpole)
or MS definitions. The measured inclusive tt̄ production cross section is compared with fully
inclusive higher-order perturbative QCD computations where the top quark mass parameter is
unambiguously defined. For instance, the extraction of mpole from the measured tt̄ cross section
provides complementary information compared to direct methods that rely explicitly on the
details of the kinematic mass reconstruction. This extraction also tests the internal consistency
of perturbative QCD calculations in a well-defined renormalization scheme, and provides an
important cross check of the direct measurements.

Direct measurement of a mass difference between particle and anti-particle would indicate a
violation of the CPT symmetry. Quarks carry color charge and cannot be observed directly as
they hadronize to colorless particles before decaying. One exception is the top quark, as it decays
before hadronization due to its short lifetime. In the measurement, carried out in the lepton+jet
channel, most of the systematic uncertainties cancel out. The mass difference between top and
anti-top quarks ∆mt is measured and no significant deviation from zero is found.
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4. Single top production
Single top is produced through electroweak interactions in the s- and t-channels, and in
association with a W boson (tW-channel). With a cross section which is a fraction (≈ 50%)
of the top quark pair production, single top has a much larger relative background, and it is
therefore more complicated to identify. Due to the relatively large background, it was first
observed at the Tevatron only in 2009 with the help of multi-variate analyses [10].

The dominant production mode is through the t-channel both at the Tevatron and at the
LHC; it has the cleanest signature with a light quark jet recoiling against the top quark. It is
characterized by one central isolated lepton and missing transverse energy, a b-jet and a forward
high-pT recoiling jet. The main background is due to QCD multi-jet and W+jet production.
Single top production in the tW associated production cross section is smaller and it can be
studied in the dilepton channel where both W bosons decay into a charged lepton and a neutrino,
or in the lepton+jet channel. The tW cross section is relatively larger at the LHC than at the
Tevatron because of the larger gluon fraction in the initial partons. Among the distinctive
features of the tW channel are the presence of a single b-jet, and the balance between the top
and the W. Even though the observation of the single top production at the Tevatron was based
on a combination of t- and s-channels, the s-channel has not yet been observed individually. With
a very small cross section, the s-channel is rather interesting as it is sensitive to various new
physics processes. In particular, it is directly proportional to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element |Vtb| and it is sensitive to the presence of a W ′ boson or flavor changing
neutral current processes. At leading order, the final state consists of a top and a bottom quark.
With the exception of the s-channel, which so far has escaped direct detection, the agreement
between experimental results and theoretical predictions is remarkably good.

5. Top quark properties
Properties of the top quark are not only interesting to better characterize this fundamental
particle, but could also give indication of new physics. Measurement of the top quark charge,
the ratio of branching fractions R=BR(t→Wb)/BR(t→Wq), top quark pair spin correlation,
W polarization in top decays, asymmetry in tt̄ events are some interesting properties.

5.1. Measurement of R
In the SM, the top quark is expected to decay as t → Wb with a branching fraction close
to 100%, as top quark decays to a W boson and a quark of different isospin are strongly
suppressed. The magnitude of the CKM matrix element |Vtb| is expected to be close to unity
as a consequence of unitarity and a deviation from this prediction could arise from a fourth
quark generation, or simply due to different decay modes. Both CDF and D0 experiments have
measured R = BR(t→Wb)/BR(t→Wq), where BR(t→Wq) is the branching fraction of the
top quark to a W boson and a q quark (q=b, s, d). A recent result from the D0 experiment
indicates some tension between the SM prediction and the data, in particular for the dilepton
channel where both W bosons decay leptonically. At the LHC, the measurement is performed
by analyzing the b-tagging jet multiplicity in tt̄ dilepton events which are expected to be pure
in tt̄ signal. The residual background and the model for the measured b-tag multiplicity are
derived from data and account not only for b-tag and mistag probabilities, but also include the
probability to fully reconstruct the decay products from top quark decays. Results are in good
agreement with the SM prediction, R=1.023+0.036

−0.034(stat.+syst.) [11], with a lower limit R>0.945
at 95%CL using the Feldman-Cousins approach. Assuming a unitary, three-generation CKM
matrix, |Vtb| = 1.011+0.018

−0.017 (stat.+syst.) is measured and |Vtb| >0.972 is obtained at 95% CL.
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5.2. tt̄ spin correlation
In tt̄ production, top quarks are unpolarized but their spins are correlated. Due to the short
lifetime of the top quark, which is smaller than the hadronization scale, the information of
the spin correlation is preserved in the decay products. It is possible to measure the spin
correlation of the top quark pair from the angular correlation of the decay products. Many
models of new physics predict different angular distributions from the SM predictions. Because
of differences in the production mechanisms (pp at the Tevatron vs. pp at the LHC) and energy,
spin correlation measurements are complementary at the Tevatron and at the LHC. Charged
leptons and down-type quarks are most sensitive to the spin correlation measurements. However,
due to the difficult experimental separation between up- and down-type quarks, spin correlations
are measured using dilepton events. In particular, the correlation coefficient is defined as the
fractional difference in the number of events with the spins of the top quarks correlated and those

with the spin anti-correlated, A = N(↑↑)+N(↓↓)−N(↑↓)−N(↓↑)
N(↑↑)+N(↓↓)+N(↑↓)+N(↓↑) . A recent Tevatron measurement

indicates a 3.1σ evidence for spin correlation [12]. The LHC results, obtained for a given
reference frame (either ”maximal” or ”helicity”) are in good agreement with the SM predictions
and exclude the hypothesis of zero spin correlation [13].

5.3. W polarization
The measurement of the polarization of the W boson from top quark decays is interesting as
new physics may lead to an anomalous Wtb coupling. Since the spin information is preserved
in top decay products and the bottom quark mass is small compared to the top and W masses,
the SM predicts the W boson to be mostly longitudinally polarized (F0 ' 69%) or left-handed
(FL ' 31%) through the V-A coupling. These fractions may significantly change in the presence
of anomalous couplings, and may be inferred experimentally from the angular distribution
between lepton from the W decay and the b-jet from the same top decay. The observed
distribution has to be corrected for detector effects, such as acceptance and resolution, and
theoretical predictions have to account for ISR/FSR, among others. Measurements show good
agreement with the SM predictions, and the results are used to set limits [14].

5.4. Charge asymmetry in tt̄ production
In tt̄ events, the difference in rapidity (or other) distributions of top and anti-top quarks is
usually known as charge asymmetry, which is sensitive to new physics models. For example,
it probes perturbative QCD predictions and provides tests of new physics models where top
quark pairs are produced through the exchange of new heavy particles, such as axigluons with
anomalous axial-vector coupling of gluons to quarks, Z’ bosons, or Kaluza-Klein excitations of
gluons.

At the Tevatron, top quarks are emitted in the direction of the incoming quark, anti-top
quarks in the direction of the incoming anti-quark. Therefore, due to the asymmetric initial
state, the asymmetry manifests as a forward-backward asymmetry in the rapidity difference

∆y between top and anti-top quarks as A = N+−N−

N++N− , where N+(N−) is the number of events

with positive (negative) values of ∆y. Recent Tevatron results [15] yield values larger (a 3σ
discrepancy) than the SM predictions. At the LHC, in pp collisions, there is no forward-backward
asymmetry as the initial state is symmetric. The quantity of interest is the charge asymmetry
and it shows as a preferential production of top quark quarks in the forward direction due to the
fact that the anti-quarks (from the proton’s sea) carry a lower momentum fraction. Differential
measurements have been obtained as a function of pT , y, and invariant mass Mtt̄ of the top
quark pair. Measurements are compatible with the SM predictions [16].
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6. Search for new physics using top quarks
Top quarks are present in many models of new physics beyond the SM. Some examples include
new particles decaying into top quark pairs, flavor changing neutral currents, anomalous missing
transverse energy, same-sign top pair production, charged Higgs production.

6.1. Top quark pair invariant mass distribution
Many extensions to the SM predict interactions with enhanced coupling to the top quarks,
resulting as resonances in the tt̄ pairs. Absence of a resonance in the first two generations is
not significant as the coupling could be small in that case. New particles could be spin-0 scalars
or pseudo-scalars, or spin-1 vector or axial-vector particles, such as a Z’ boson, a Kaluza-Klein
gluon or axigluon, or also spin-2 particles. Specific analysis tools are developed for the searches
in the high-mass regions where the top quarks are highly boosted and the decay products tend
to be collimated. Searches spanning from narrow (with a width of 1-3%) to wide (' 10%)
resonances, both in the low- (up to 1 TeV) and in the high-mass (up to several TeV) regions,
result in exclusion limits for new particle production rate.

6.2. Flavor Changing Neutral Currents
Searches for rare decays of top quarks are possible thanks to the large number of top events
collected. Top quarks decay to W boson and a bottom quark with a branching fraction of about
100%. However, some extensions of the SM predict that the top quark may also decay to a Z
boson and a quark, t→ Zq, where q is a u or a c quark. The latter is a decay predicted with a
small branching fraction of the order of 10−14, which is beyond the current experimental reach.
Therefore, detection of a signal could indicate deviations from the SM predictions. Search for
FCNC processes is sought in the tri-lepton final state, where one top t→ Zq → ``q is produced.
FCNC can also be sought in the single top production; however, this is experimentally very
challenging as the final signature qg → t → W (→ `ν)b has one isolated lepton, one b-jet, and
missing transverse energy, with a large background from W+jet events. Measurements indicate
that branching fractions BR(t→ Zq) > 0.24% are excluded at 95%CL.

6.3. Same-sign top quark production
New models put forth to explain the larger-than-expected forward-backward asymmetry
measurement at the Tevatron require FCNC in the top sector mediated by the t-channel
exchange of a new massive Z’ boson. These mechanisms would generate same-sign top quark
pair production. However, the LHC results disfavor the region of parameter space consistent
with the Tevatron AFB measurement.

7. Summary and outlook
After almost twenty years since its discovery, top quark still remains an interesting probe of the
SM. Large samples of top quarks have allowed detailed tests of the SM up to levels of precision
which are challenging the theory. However, many fundamental questions still remain, and some
of the difficult questions are yet unanswered. Some measurements are rapidly approaching (or
already did) the grey zone of being limited by systematic uncertainties.

With even larger data samples, additional studies may shed light on important open questions.
Associated production of a Higgs boson with the top quark pair tt̄H is important as it would
provide direct determination of the top-Higgs couplings, separately for the different Higgs decay
modes. Supersymmetry could also affect top quark production. Due to the large top quark
mass, the lightest scalar top quark t̃1 can be the lightest scalar quark and even lighter than
the top quark itself. Presence of light top and bottom squarks, charginos and neutralinos could
alter the predicted rates through direct stop pair production, through the processes t̃1 → χ̃+

1 b
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or t̃1 → tχ̃0
1. For instance, for a scalar top quark lighter than the top quark, the decay channel

t̃1 → χ̃+
1 (→ χ̃0

1W )b has a similar signature to tt̄ events apart from the presence of the neutralinos,
whose experimental signature mimics that of a neutrino.
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