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Abstract. We study collective electron excitations (also referred to as plasmons) in the C60

fullerene in the processes of photoionization and electron inelastic scattering. To reveal the
contribution of collective electron excitations, we utilize the plasmon resonance approximation.
It is shown that within this framework the photoionization cross section is described as a sum
of two contributions, which represent two coupled modes of the surface plasmon. The electron
energy loss spectra of C60 are described by three contributions, namely by the two modes of the
surface plasmon and the volume plasmon. The results of calculations are in good agreement
with experimental data on photoionization and electron inelastic scattering of C60. We show
that the collective excitations play a significant role in the ionization process and provide a
dominant contribution to the spectra.

1. Introduction
Since the discovery of fullerenes [1], the peculiar highly symmetric geometry and amazing
properties [2] of these molecules have attracted a lot of interest and stimulated intensive
experimental and theoretical investigations (see, e.g. [3]). At present, the investigation of
fullerenes is active since they are proposed to be used in various fields of science and technology.
For instance, excitation of fullerenes, placed in a biological medium, by an external radiation or
incident heavy ions may lead to an enhancement in generation of secondary electrons or reactive
oxygen species [4]. This allows fullerenes to be potentially used as sensitizers in photodynamic
therapy or in ion-beam cancer therapy. A very important fundamental problem closely related
to these application is an adequate description of dynamic response of fullerenes to external
fields or to the interaction with projectiles.

A characteristic feature of a fullerene molecule is a partial delocalization of its electrons and
hybridization of atomic orbitals. The valence 2s22p2 electrons in each carbon atom form a cloud
of delocalized electrons, which can be excited collectively by an external electric field. This
excitation is represented as collective oscillation of delocalized electrons against the positively
charged ions. By analogy with the collective electron excitations in condensed media, the
collective excitations in fullerenes are referred to as plasmons.

4 On leave from A.F. Ioffe Physical-Technical Institute, St. Petersburg, Russia

International Conference on Dynamics of Systems on the Nanoscale (DySoN 2012) IOP Publishing
Journal of Physics: Conference Series 438 (2013) 012011 doi:10.1088/1742-6596/438/1/012011

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



It was predicted theoretically [5] and soon after observed experimentally [6] that the
photoionization spectrum of the gas phase C60 molecules is characterized by a broad prominent
peak located at about 20 eV, the so-called giant resonance, which is formed due to collective
electron excitations. Similar to photoionization, a broad resonant-like structure between 20 and
30 eV was observed in the process of inelastic scattering of electrons on C60 [7–10]. Recent
experiments on photoionization of neutral [11] and charged [12] C60 molecules revealed the
existence of the second collective resonance at about 40 eV and opened up the discussion [13,14]
on the nature of this resonance.

In the present paper we study the formation of plasmon excitations in the C60 fullerene in
the processes of photoionization and electron inelastic scattering. To evaluate the contribution
of collective electron excitations to the cross sections, we utilize the plasmon resonance
approximation [15–17]. It allows one to apply the classical electrodynamics and hydrodynamics
to study a collective motion of delocalized electrons of the system. We show that, similar to
metal clusters [18], there are two different types of collective electron excitations, namely the
surface and the volume plasmons, which can be formed in fullerenes. The dipole surface plasmon
is responsible for the formation of the giant resonance in photoionization spectrum of fullerenes,
while the volume plasmon modes, which have higher resonance frequencies, provide an essential
contribution to the formation of the electron impact ionization cross section. Within the plasmon
resonance approximation, the photoionization cross section of C60 is described as a sum of two
contributions, which represent two coupled modes of the surface plasmon. The electron energy
loss spectra of fullerenes are described by three contributions, namely by the two modes of the
surface plasmon and the volume plasmon as well. We show that the collective excitations play
a significant role in the excitation process and provide a dominant contribution to the spectra.

The atomic system of units, m = |e| = ~ = 1, is used throughout the paper.

2. Methods of investigation
To study the processes of photoionization and electron inelastic scattering from C60, we utilize
the following model. We consider the fullerene as a spherically symmetric system with a
homogeneous charge distribution over the shell of a finite width, ∆R = R2−R1, where R1,2 are
the inner and the outer radii of the molecule, respectively [9, 19–21]. The chosen value of the
shell’s width, ∆R = 1.5 Å, corresponds to the typical size of the carbon atom [20].

The equilibrium electron density distribution, ρ0(r), is expressed via the number N of
delocalized electrons (four valence 2s22p2 electrons from each carbon atom, i.e. N = 240 in
case of C60) and the fullerene volume V :

ρ0 =

{
N/V for R1 ≤ r ≤ R2

0 if otherwise .
(1)

The volume of the fullerene shell can be expressed as

V =
4π

3

(
R3

2 −R3
1

)
=

4π

3
R3

2

(
1− ξ3

)
, (2)

where ξ = R1/R2 ≤ 1 is the ratio of the inner to the outer radii. It should be mentioned
that the spherical-shell model defined by equations (1) and (2) is applicable for any spherically
symmetric system with an arbitrary value of the ratio ξ. Supposing ξ = 0, one obtains a model
of a metal cluster [15,16,18], while the case ξ = 1 represents a fullerene modeled as an infinitely
thin sphere [8, 15,17].

Action of the external electric field causes variation of the electron density, δρ(r, t), in the
system. Thus, the total electron density is introduced as

ρ(r, t) = ρ0(r) + δρ(r, t) , (3)
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where ρ0(r), defined by equation (1), denotes the stationary distribution of the negative charge.
Treating a collective motion of delocalized electrons of the system as a charged liquid, one can

apply the classical electrodynamics and hydrodynamics to describe this motion. The detailed
formalism of this approach is presented in [22–24]. Therefore, here we skip the details of the
derivation and introduce the general equation for the variation of electron density in an arbitrary
spherically symmetric system [23,24]:

(
ω2 − 4πρ0(r)

)
δρl(r) + 4π

ρ′0(r)

2l + 1

∞∫
0

gl(r, r
′)δρl(r

′)dr′ = q2ρ0(r)ϕl(r)− ρ′0(r)ϕ
′
l(r) , (4)

where δρl(r) is multipole variation of electron density in a spherically symmetric system under
the action of the multipole component ϕl(r) of the external field, ω is the frequency of the
external field, and the function gl(r, r

′) is defined as:

gl(r, r
′) = l

( r

r′

)l−1
Θ(r′ − r)− (l + 1)

(
r′

r

)l+2

Θ(r − r′) , (5)

where Θ(x) is the Heaviside step function.
In case of the fullerene model defined above, the equilibrium electron density distribution,

ρ0(r) (see equation (1)), and the corresponding derivative ρ′0(r) can be written as:

ρ0(r) = ρ0Θ(r −R1)Θ(R2 − r) , ρ′0(r) = ρ0

(
δ(r −R1)− δ(r −R2)

)
, (6)

where δ(x) is the delta function.
The solution of equation (4) for a fullerene is then sought in the following form:

δρl(r) = δϱl(r)Θ(r −R1)Θ(R2 − r) + σ
(1)
l δ(r −R1) + σ

(2)
l δ(r −R2) , (7)

where δϱl(r) describes the volume density variation arising inside the fullerene shell, and σ
(1,2)
l are

variations of the surface charge density at the inner and outer surfaces of the shell, respectively.
The first term leads to the formation of the volume plasmon, while the two latter terms produce
two coupled modes of the surface plasmon, the symmetric and antisymmetric ones [19, 20] (see
figure 1).

Figure 1. Representation of the two modes of the surface plasmon (left and middle panels) and
of the volume plasmon (right panel). Light-blue and dark-blue regions represent the additional
positive and negative charge, respectively.
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The photoionization and inelastic scattering cross sections are treated within the plasmon
resonance approximation [15–17]. It relies on the fact that collective plasmon excitations give
the main contribution to the cross section in the vicinity of the giant resonance. A single-
particle contribution, which comes from quantum phenomena, is not accounted for in the
approximation, since the single-particle effects give a small contribution as compared to the
collective modes [16, 18]. The detailed formalism for the description of plasmon excitations in
electron- and photon-fullerene collisions is presented in [23,24].

Within the plasmon resonance approximation, the differential inelastic scattering cross section
of fast electrons in collision with fullerenes can be defined as a sum of three contributions:

d3σ

dε2dΩp2

=
d3σ(v)

dε2dΩp2

+
d3σ(s1)

dε2dΩp2

+
d3σ(s2)

dε2dΩp2

, (8)

where

d3σ(v)

dε2dΩp2

=
2R2p2
πq4p1

ω
∑
l

ω2
p Γ

(v)
l Vl(q)

(ω2 − ω2
p)

2 + ω2Γ
(v)2
l

d3σ(s1)

dε2dΩp2

=
2R2p2
πq4p1

ω
∑
l

ω2
1l Γ

(s)
1l S1l(q)

(ω2 − ω2
1l)

2 + ω2Γ
(s)2
1l

d3σ(s2)

dε2dΩp2

=
2R2p2
πq4p1

ω
∑
l

ω2
2l Γ

(s)
2l S2l(q)

(ω2 − ω2
2l)

2 + ω2Γ
(s)2
2l

(9)

are obtained within the plane-wave first Born approximation. Here ε2 = p2
2/2 is the kinetic

energy of the scattered electron, Ωp2 its solid angle, p1 and p2 the initial and the final momenta
of the projectile electron, q = p1 − p2 the transferred momentum, ω = ε1 − ε2 the energy
loss, and ε1 the kinetic energy of the incident electron. The volume plasmon frequency,
ωp =

√
3N/(R3

2 −R3
1) (where N is the number of delocalized electrons), is related to the

frequencies of the symmetric and antisymmetric surface plasmon modes of the multipolarity
l by the following expression [19,20,23]:

ω2
(1,2)l =

ω2
p

2

(
1∓ 1

2l + 1

√
1 + 4l(l + 1)ξ2l+1

)
, (10)

where the signs ’−’ and ’+’ correspond to the symmetric (ω1l) and the antisymmetric (ω2l)

modes, respectively, and ξ = R1/R2. The quantities Γ
(v)
l and Γ

(s)
jl (j = 1, 2) are the widths of

the plasmon resonances. Functions Vl(q), S1l(q) and S2l(q) are the diffraction factors depending
on the transferred momentum q. They determine the relative contribution of the multipole
plasmon modes in various ranges of electron scattering angles and, thus, the resulting shape of
the differential energy loss spectrum. Explicit expressions for these functions are given in [23].

It was shown [15] that the excitations with large angular momenta l have a single-particle
rather than a collective nature. It follows from the fact that with the increase of l the wavelength
of the plasmon excitation becomes smaller than the characteristic wavelength of the delocalized
electrons in the fullerene. In the case of C60, the estimates show [15] that the excitations with
l > 3 are formed by single-electron transitions rather than by the collective excitations. Hence,
only terms corresponding to the dipole (l = 1), quadrupole (l = 2) and octupole (l = 3) plasmon
excitations should be accounted for in the sum over l in equations (8) and (9).

The theory presented relies on the number of multipole terms to be accounted for (lmax = 3)

and the widths of the plasmon resonances, Γ
(s)
jl and Γ

(v)
l , which are not just the fitting parameters
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of the model but the real physical quantities. Their calculation can be performed considering
another physical process, namely, the decay of the collective excitation mode into the incoherent
sum of single-electron excitations. Such calculations are beyond the scope of the present paper.
Nevertheless, one can estimate the widths of the plasmon excitations in the fullerene using the
relation similar to the Landau damping of plasmon oscillations. Such an estimate results in

Γ
(s)
jl ∼ lvF /∆R, where vF is the velocity of the fullerene electrons on the Fermi surface. A

similar estimate was successfully applied to the investigation of collective excitations in metal
clusters [18].

In Ref. [13, 23, 24], it was shown that in case of photoionization, when the system interacts
with a uniform external electric field, only the surface plasmon can occur. Indeed, the wave
length of electromagnetic radiation is assumed to be much larger than the characteristic size of
the system, i.e. the condition ωR ≪ 1 is fulfilled. This condition implies the validity of the dipole
approximation, i.e. only dipole excitations (l = 1) may arise in the system due to interaction
with the external electromagnetic field. In this limit, equation (4), describing interaction with
an external field, is simplified due to q = 0. Thus, the photoionization cross section is defined as
a sum of two contributions which correspond to the two modes of the surface plasmon [21,23]:

σ(ω) =
4πω2

c

(
N1 Γ1

(ω2 − ω2
1)

2 + ω2Γ2
1

+
N2 Γ2

(ω2 − ω2
2)

2 + ω2Γ2
2

)
. (11)

Here ω is the photon energy, ω1 ≡ ω11 and ω2 ≡ ω21 are the frequencies of the symmetric

and antisymmetric surface plasmon modes, respectively, Γ1 ≡ Γ
(s)
11 and Γ2 ≡ Γ

(s)
21 are the

corresponding widths. N1 and N2 are the number of delocalized electrons, involved in each
collective excitation, which should obey the sum rule N1 + N2 = N . The frequencies of the
collective excitations are defined as [19–21]

ω2
1,2 = ω2

0 +
ω2
p

6

(
3∓

√
1 + 8ξ3

)
, (12)

where the signs ’−’ and ’+’ correspond to the symmetric and antisymmetric modes, respectively,
ωp is the volume plasmon frequency defined above, and ξ = R1/R2. The term ω2

0 defines the
free-electron picture threshold [20]. Following Ref. [20], we use the threshold value ω0 = 14 eV
in the calculations. Below ω0, some of the electrons are treated as bound ones and, therefore,
are not involved in the formation of the plasmon excitations.

In the calculations, we used the ratio γ1 = Γ1/ω1 = 0.6 for the symmetric mode, which
corresponds to the experimental values obtained from the photoionization and energy loss
experiments on neutral C60 [6,8]. For the antisymmetric mode, we used the value γ2 = Γ2/ω2 =
1.0 which corresponds to the widths of the second plasmon resonance obtained in the study of
photoionization of Cq+

60 (q = 1− 3) ions [12].

3. Results and discussion
In this section, we present the results of calculations of photo- and electron impact ionization
spectra of the C60 fullerene based on the formalism described above. Figure 2 represents the
photoionization spectrum of C60 calculated using the plasmon resonance approximation (see
equation (11)). The left panel shows the spectrum obtained in the broad range of photon
energies, namely up to 100 eV, while the right panel shows in more detail the region of the
plasmon resonances, up to 50 eV. The symmetric and antisymmetric modes of the surface
plasmon are shown by the dashed red and dash-dotted blue curves, respectively. The widths Γ1

and Γ2 of the symmetric and antisymmetric modes of the surface plasmon are equal to 11.4 and
33.2 eV, respectively, and correspond to the results of experimental measurements [6, 12]. The
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sum of the two modes is shown by the thick solid green line. Theoretical curves are compared
to the results of experimental measurements of photoabsorption of C60 [6,25,26]. Open squares
represent the recent compilation of experimental data made by Kafle et al. [25] in a broad
energy range up to 100 eV (see the left panel). Open circles and stars represent, respectively,
the compilation of experimental data made by Berkowitz [26] and the results of experimental
measurements by Hertel et al. [6] (see the right panel).
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Experimental data:
 Kafle et al.
 Hertel et al.
 Berkowitz

Figure 2. The photoabsorption cross section of C60 calculated within the plasmon resonance
approximation (thick green line). Contribution of the symmetric and antisymmetric modes
of the surface plasmon are shown by the dashed red and dash-dotted blue lines, respectively.
Theoretical curves are compared to the experimental data of Kafle et al. [25] (open squares),
Berkowitz [26] (open circles) and Hertel et al. [6] (open stars). The left panel shows the spectrum
obtained in the broad range of photon energies, up to 100 eV, and the right panel shows in more
detail the region of the plasmon resonances, up to 50 eV.

As it is seen from figure 2, the plasmon resonance approximation gives a good agreement
with the experimental data. The oscillator strength, calculated in the energy range up to 100
eV, is equal to 216.3, and corresponds to the experimentally measured value of 230.5 [25]. The
plasmon resonance approximation describes quite well the main features of the giant resonance,
such as height, width and position of the peak. Therefore, such a model can be considered as a
useful tool for interpretation of experimental results. It should be also noted that the approach
is focused on the study of collective electron excitations above the ionization threshold, which
is about 7.6 eV for C60 [6]. Therefore, it does not account for the series of discrete excitations,
which manifest themselves in the low-energy region of the spectrum below 10 eV [27].

Figure 3 represents the electron energy loss spectra of C60 calculated within the plasmon
resonance approximation (see equations (8) and (9)). The calculations were performed for the
scattering angles θ = 3◦, 5◦, 7◦ and 9◦, and the curves obtained were compared to the results
of recent experimental measurements of the inelastic scattering of fast (1 keV) electrons on
C60 [9,10]. The results of the comparison are presented in figure 3. For the sake of convenience,
both the experimental and the theoretical curves are normalized to unity at the point of
maximum.

Similar to the study of the photoionization process, we used the ratios γ
(s)
1l = 0.6 and

γ
(s)
2l = 1.0 for the symmetric and antisymmetric modes, respectively. The widths of the volume
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Figure 3. Comparison of the electron energy loss spectra, calculated within the plasmon
resonance approximation, with the experimental spectra measured for the incident energy range
1002-1050 eV and for the scattering angles θ = 3◦ . . . 9◦. The symmetric and antisymmetric
modes of the surface plasmon are shown by dashed red and the dash-dotted blue lines,
respectively; the volume plasmon contribution is shown by the double-dotted purple line. The
total cross section is shown by the thick green line. Open squares represent the experimental
data [9, 10]. For the sake of convenience, both the experimental and the theoretical curves are
normalized to 1 at the point of maximum. The energy scale is the same for all panels.

plasmon were varied to obtain a better agreement with the experimental data. In the present

calculations, the ratios γ
(v)
l = Γ

(v)
l /ωp were considered within the range 0.7 . . . 1.3. The values

of the plasmon frequencies and the corresponding widths for all three collective excitations are
summarized in table 1.

In figure 3, the dashed red and dash-dotted blue curves represent, respectively, the symmetric
and antisymmetric modes of the surface plasmon, the double-dotted purple line shows the
contribution of the volume plasmon. The sum of the three collective excitations is shown by the
thick green line. Open squares represent the experimental data [9, 10].

At the small scattering angle, θ = 3◦, the symmetric mode of the surface plasmon (dashed red
line) dominates the cross section. A similar behavior is observed in the photoionization process
(see figure 2). In fact, in the case of the uniform external field (q → 0), there is no volume
plasmon excitation in the system and the symmetric plasmon mode exceeds significantly the
antisymmetric mode. Non-uniformity of the external field causes the formation of the volume
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Table 1. Peak positions and the widths of the two surface plasmon modes and of the volume
plasmon used in the present calculations. All values are given in eV.

l = 0 l = 1 l = 2 l = 3

ω1l 0 19.0 25.5 30.5

Γ
(s)
1l 0 11.4 15.3 18.3

ω2l 37.1 33.2 31.0 29.5

Γ
(s)
2l 37.1 33.2 31.0 29.5

ωp 37.1

Γ
(v)
l 26.0 - 48.3

plasmon whose contribution to the cross section is insignificant when the scattering angle is small.
With increasing the scattering angle (θ = 5◦ and 7◦), the symmetric mode of the surface plasmon
becomes less relevant and the antisymmetric mode (dash-dotted blue line) more prominent. At
the larger angle (θ = 9◦), the symmetric surface plasmon almost does not contribute to the
cross section while the volume plasmon (double-dotted purple line) becomes dominant. The
contribution of the antisymmetric surface and the volume plasmons can explain the origin of
the two peaks in the energy loss range from 20 to 30 eV at the scattering angle θ = 7◦.

The peak position of each plasmon resonance (9) as well as of the resulting cross section
d3σ/dε2dΩp2 is influenced by the manifestation of the diffraction effects. In Ref. [8], it was
shown that plasmon modes with different angular momenta provide dominating contributions
to the differential cross section at different scattering angles, which leads to the significant
angular dependence of the energy loss spectrum. This phenomenon was described in terms of
the electron diffraction at the fullerene edge [8]. As it is seen from equation (9), the resonance
peak of each plasmon is defined not only by the plasmon frequencies ωp, ω1l and ω2l but also
by the multipolar diffraction factors Vl(q), S1l(q) and S2l(q) which depend on the transferred
momentum q. In the limiting case of an infinitely thin layer, this dependence is described by
the spherical Bessel functions j2l (qR) which oscillate with q and, thus, give suppression and
enhancement of the partial plasmon modes at certain angles [8]. The incident energy of the
projectile does not influence on this behavior and defines only the absolute value of the cross
section.

4. Conclusion
To conclude, we studied the formation of plasmon excitations in the C60 fullerene in the processes
of photoionization and electron inelastic scattering. To reveal the contribution of collective
electron excitations, we utilized the plasmon resonance approximation. We showed that the
photoionization cross section of C60 is described within the utilized approach as a sum of two
contributions, which represent two coupled modes of the surface plasmon. In case of electron
inelastic scattering, non-uniformity of the external electric field causes also the formation of
the volume plasmon, whose contribution to the cross section is insignificant for small scattering
angles and becomes dominant, as the angle increases. The results of calculations are in good
agreement with experimental data on photoionization and electron inelastic scattering of C60.
The plasmon resonance approximation describes quite well the main features of the giant
resonance, such as height, width and position of the peak as the model is proved to be a useful
tool for interpretation of experimental results.
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