OPEN ACCESS

Nb₃Sn multifilamentary superconductors fabricated through a diffusion reaction between Nb and Ag-Sn alloys

To cite this article: G Matsumoto et al 2006 J. Phys.: Conf. Ser. 43 31

View the article online for updates and enhancements.

You may also like

- <u>Fabrication of (Ba,K)Fe, As, tapes by ex</u> <u>situ PIT process using Åg-Sn alloy single</u> <u>sheath</u>

K Togano, Z Gao, A Matsumoto et al.

- Calculation of evaporation rates of all components in Ag-Pb-Sn ternary alloy in vacuum distillation using modified molecular interaction volume model Yanjun You, Lingxin Kong, Junjie Xu et al.
- <u>Transient liquid-phase sintering using</u> <u>silver and tin powder mixture for die</u> <u>bonding</u> Masahisa Fujino, Hirozumi Narusawa, Yuzuru Kuramochi et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.145.94.251 on 27/04/2024 at 16:51

Nb₃Sn multifilamentary superconductors fabricated through a diffusion reaction between Nb and Ag-Sn alloys

G Matsumoto¹, K Inoue¹, A Kikuchi², T Takeuchi², T Kiyoshi²

*1. The University of Tokushima, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan *2. National Institute for Materials Science, 1-2-1 Sengen, Tsukuba-shi, Ibaraki 305-0047, Japan

E-mail: inouek@tokushima-u.ac.jp

Abstract. Ag-Sn alloy is very attractive for fabricating Nb₃Sn wires through diffusion reaction, because Ag-based alloy including a large amount of Sn is ductile. Therefore we investigated the Nb₃Sn formation through the diffusion reaction between Nb and Ag-Sn alloys. With using Ag-9 at% Sn fcc phase, Ag-12 at% Sn ζ phase, and Ag-24at% Sn ε phase alloys, we fabricated single-core, 200-core, and 40000-core composite wires with Nb matrix and Ag-Sn alloy cores. With increase of Sn content in Ag-Sn alloys, the obtained superconducting properties of heat treated composite wires were improved. T_c and $B_{c2}(4.2 \text{ K})$ for the Nb/Ag-Sn are similar to those for the Nb/Cu-Sn. However, the I_c values are relatively small, due to the formed very thin Nb₃Sn layers. Ag is apparently not so effective to increase the formation rate of Nb₃Sn layer as Cu. We obtained very interesting results by making the 200-core and 40000-core wires, which show the improved T_c and $B_{c2}(4.2 \text{ K})$ by 0.5-1 K and 2-5 T, respectively. From 10 to 500 times larger $I_c(4.2 \text{ K})$ were also obtained for the multifilamentary wires.

1. Introduction

Cu is well known to accelerate the formation rate of Nb₃Sn in diffusion reaction [1]. According to the phase diagram of Ag-Sn binary alloy [2], Sn is more soluble in ductile Ag-fcc phase (up to 11.5 at%) than in ductile Cu-fcc phase (up to 9.1 at%). Recently we found that the Ag-Sn ζ phase including Sn from 11.8 to 22.85 at% is also ductile at room temperature. Therefore we investigated the Nb₃Sn formation through diffusion reaction between Ag-Sn alloy and Nb by making the single-core Nb/Ag-Sn composite wires and multifilamentary Nb/Ag-Sn composite wires. Nb₃Sn is formed through the diffusion reaction between Nb and Ag-Sn alloy, and shows T_c of 15-17.7 K and $B_{c2}(4.2 \text{ K})$ of 16-20 T. However, I_c of the single-core wire is not so high, because the thickness of Nb₃Sn layer is very thin. The formation rate of Nb₃Sn layer between Nb/Ag-Sn is relatively high and comparable to that of the bronze processed Nb₃Sn layer without Ti or Ta additions [3]. Therefore the multifilamentary Nb/Ag-Sn micro-composite is interesting as a practical superconductor. Ag is apparently not as effective in accelerating the Nb₃Sn formation rate in the diffusion reaction as Cu.

2. Sample preparations and measuring methods

Figure 1. Cross-sections of 200-core Nb/Ag-9at%Sn (left side) and 200-core Nb/Ag-12at%Sn (right side) composite wires.

Ag-9at%Sn (fcc phase), Ag-12at%Sn (ζ phase), and Ag-24at%Sn (ϵ phase) alloy ingots were fabricated by using a Tammann furnace. The Ag-9at%Sn and Ag-12at%Sn alloys are ductile, and cold-worked into rods, while the Ag-24at%Sn alloy is brittle, and crashed into powder. The Ag-9at%Sn and Ag-12at%Sn rods were inserted into Nb pipes. The Ag-24at%Sn powder was also packed into a Nb pipe. These single-core composites were cold-drawn into fine wires with 0.79 mm diameter.

200 short single-core wires with 1.05 mm diameter were bundled and inserted into Nb pipes. The 200-core composite wires were cold-drawn into fine wires with 0.79 mm diameter, as shown in Figure 1. The same processes were repeated for the 200-core composite wires with Ag-9at%Sn in order to fabricate the 40000-core composite wires with Ag-9at%Sn. The single-core composite wire with the Ag-24at%Sn powder showed abnormal deformation in the cross-section configuration. Therefore we did not try to fabricate multi-core composite wire by using the Ag-24at%Sn powder.

Finally these single, 200, and 40000-core composite wires with 0.79 mm were heat treated at 600-1000°C to form Nb₃Sn layer with A15 crystal structure through the diffusion reaction. After the heat treatment, the Nb₃Sn wires were electroplated with Cu of 7 μ m thick in order to solder the current and potential leads for T_c and I_c measurements.

 T_c was measured by a resistive method with a transport current of 0.01 A, and defined as the temperature where the specimen showed half the value of normal-state resistance. I_c was defined as the transport current where the sample showed a potential rise of 100 μ V/m with increasing the transport current in perpendicular fields. B_{c2} was determined by extrapolation from Kramer plot by using I_c in high fields [4]. OM and SEM observations were performed on the cross-sections of these wires in order to clear up the diffusion reactions between Nb and Ag-Sn alloys. The composition analysis at the diffusion layers were carried out with energy dispersive X-ray (EDX) spectrometer.

3. Results and discussions

According to the OM and SEM observations on the cross-section of the single-core wire, abnormal deformations in the cross-section configuration were occurred in the single-core wire with Ag-24at%Sn powder, while those were not observed in the single-core wires with Ag-9at%Sn and Ag-12at%Sn. Figure 1 shows the cross-sections of 200-core composite wires with Ag-9at%Sn and Ag-12at%Sn. Both the wires show the clear multifilamentary structures without any contacts between filaments The Ag-12at%Sn cores in the figure is much smaller than the Ag-9at%Sn cores, because the Nb pipe with thicker wall was used for fabricating single-core Nb/Ag-12at%Sn composite.

Through SEM observations, we could observe a very thin layer (about 0.4 μ m) is formed between Nb and Ag-Sn alloy, as shown in Figure 2. By considering the results of superconducting properties and EDX analysis on the thin layer between Nb and Ag-Sn alloy should be Nb₃Sn. Ag does not accelerate the Nb₃Sn formation in the diffusion reaction between Nb and Sn, as Cu does. The formation rate of Nb₃Sn between Nb/Ag-Sn is 1/10-1/100 times slower than those between Nb/Cu-Sn.

Figure 2. SEM micrograph on the boundary between Nb and Ag-9at%Sn in the 200-core wire heat treated at 800°C for 40 hr. The results of EDX analysis are also shown at lower side. The line analysis was performed at the position shown by a white line.

With the heat treatment at 650-900°C, the composite wires showed T_c of 15-17.8 K and $B_{c2}(4.2 \text{ K})$ of 15-20 T, which indicate that the formation of Nb₃Sn occurred with the diffusion reaction. Dependence of T_c , $I_c(4.2 \text{ K}, 14 \text{ T})$, and $B_{c2}(4.2 \text{ K})$ on the Sn content in the Ag-Sn core are shown in Figure 3. The maximum values are used in this figure. In addition I_c values were revised in this figure by using the total Nb/Ag-Sn boundary-lengths, in order to have the same boundary lengths as those in the Nb/Ag-9at%Sn composite wires.

With increasing Sn content in Ag-Sn core, T_c , B_{c2} , and I_c are monotonically increased. With increasing core number, which indicates the decreasing of diffusion reaction length, T_c , B_{c2} , and I_c are increased, excepting for T_c degradation of 40000-core Nb/Ag-9at% Sn wire. The shorter length in diffusion reaction may cause an enough supply of Sn into the Nb₃Sn layer, resulting in the fabrication of near-stoichiometry Nb₃Sn with high T_c and high B_{c2} . By the way, the core thicknesses in 40000-core Nb/Ag-9at% wire are less than 0.3 μ m. The proximity effect may cause the T_c degradation [5].

Typical I_c vs. B curves for single-core, 200-core, and 40000-core Nb/Ag-9at%Sn composite wires are shown in Figure 4. With the increase of core number from 1 to 40000, I_c of the wires are increased by 100 to 500 times. Of course the best I_c value, obtained in this study, is also not enough for the practical applications. However, the $J_c(4.2 \text{ K}, 17 \text{ T})$ values of Nb₃Sn layers are higher than

Figure 3. Dependence of T_c , I_c , and $B_{c2}(4.2 \text{ K})$ on the Sn content in the Ag-Sn cores. The obtained maximum values are shown in this figure. I_c values are revised to have same boundary lengths as those in the Nb/Ag-9at%Sn.

Figure 4. I_c (4.2 K) vs. B curves for the Nb/Ag-9at%Sn wires with single-core, 200-core, and 40000-core. The single core, 200-core, and 40000-core wires were heat treated at 700°C for 100 hr, 850°C for 10 hr, and 650°C for 8 hr, respectively.

100 A/mm² for the 200-core, according to the SEM observations. In addition we could not measure the thickness of Nb₃Sn layer in the wire, heat treated for shorter time, with showing relatively high I_c, in which much higher J_c can be expected. Therefore J_c of the Nb₃Sn layer between Nb/Ag-Sn is comparable to that of the bronze processed Nb₃Sn conductor without Ti or Ta additions. By optimizing the cross-sectional configuration, the multifilamentary Nb₃Sn conductor made by Nb/Ag-Sn micro-composite should show higher overall J_c in high fields.

The 40000-core wire with Ag-12at% Sn is under fabrication, of which results will be reported in near future.

4. Conclusions

Through these studies, we obtained the following conclusions.

- (1) Nb₃Sn is formed through the diffusion reaction between Nb and Ag-Sn alloy.
- (2) With increase of Sn content in Ag-Sn alloy, Nb₃Sn shows higher superconducting properties.
- (3) Ag-Sn ζ phase shows enough ductility to fabricate a multifilamentary Nb/Ag-Sn composite wire.
- (4) The formation rate of Nb₃Sn between Nb/Ag-Sn is 1/10-1/100 times slower than those between Nb/Cu-Sn.
- (5) T_c and B_{c2} , obtained for Nb/Ag-Sn conductor are similar to those for Nb/Cu-Sn conductor without Ti or Ta additions.
- (6) I_c is relatively small for single-core wire, and improved drastically by increasing core number, because J_c of Nb₃Sn layer is relatively high. Therefore the Nb₃Sn conductor made by the new process seems to be practically interesting.

5. Acknowledgements

Authors would like to thank Dr. S. Nimori and Mr. H. Takizawa of NIMS for supporting the investigation. A part of this study was financially supported by Industrial Technology Research Grant Program from NEDO of Japan.

References

- [1] Luman T and Dew-Hughes D, Treatise on Materials Science and Technology 14 (1979, Academic Press) 145.
- [2] Karakaya I and Thompson W T, Bull. Alloy phase Diagrams 8(4), (1987).
- [3] Welch P O, Adv. Cryo. Eng. 30 (1984) 671.
- [4] Kramer E J, J. Appl. Phys. 44 (1973) 1360.
- [5] Hlasnic I, Cryogenics 25 (1987) 558.