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Abstract. A new nuclear demagnetization system coupled to a powerful dilution refrigerator 
and a vector magnet was successfully built and operated. Our aim was to construct a versatile, 
modular cryostat, with a large experimental space providing an excellent platform for various 
types of ultralow temperature measurements. A powerful dilution unit allows us to cool the 
mixing chamber down to 3 mK and to precool a massive copper (~90 mol) nuclear stage in a 
field of 9 T to 8 mK in 100 h. After demagnetization the lowest temperature of the copper stage 
measured by a Pt thermometer was 50.9 µK in a field of 20 mT. The cryostat is integrated with 
a 8 T - 4 T vector magnet system. The refrigerator is provided with a 50 mm central clear shot 
tube allowing the insertion of a top-loading probe to cool down samples for measurements 
inside the vector magnet bore in a reasonably short time of about 4 hours. The system will be 
used to study quantum critical behavior of heavy fermion compounds. 

1.   Introduction 
At present the method of choice for producing temperatures in the microkelvin regime is a 
combination of two basic ideas: (1) adiabatic demagnetization cooling first shown by Kurti1,2 and (2) 
the dilution of 3He in 4He suggested by London3 and in another version improved by London et al.4. A 
major step forward in the development of the nuclear cooling technique was the successful use of a 
dilution refrigerator and a superconducting magnet to obtain improved starting conditions in the early 
1970s. Some of the major achievements in dilution refrigeration and nuclear cooling can be found in 
the literature.5-12 

In this paper, we describe the construction and performance of a new nuclear demagnetization 
refrigerator which was designed for experimental work on condensed matter at microkelvin 
temperatures. 

2.   Dilution refrigerator and magnet 
The dilution refrigerator used in the described cryostat is a model DRS 1000 (figure 1A) that was 
designed and manufactured by Leiden Cryogenics BV. Technical details about the design and 
construction of the 1 K pot, the still, the continuous counter flow heat exchangers (HE), and the 
mixing chamber (MC) can be found in the literature.5,6,11,12 This system has very large cooling power: 
Q120 mK = 1300 µW, Q30 mK = 100 µW, and Q10 mK = 10 µW at the circulation rate of 1.5 mmole/s. 
Without the copper nuclear stage we reached a base temperature of 3.15 mK. 
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The gas handling system consists of: (1) control panel, (2) controller for turbomolecular pumps, (3) 
MaxiGauge vacuum gauge controller, (4) triple current source, (5) pumping system, and (6) 600 liter 
tank used for storing 4He-rich mixture. Most of the valves of the control panel are integrated into an 
aluminum block- making the system very compact and reliable. They are furnished in a cabinet made 
of hollow square stainless steel tubes welded to make a leak-tight reservoir for storing the 176 liters of 
3He. 

For measuring the temperatures at various places of the cryostat we use two different kinds of 
thermometry: (1) resistance thermometry (Pt resistance thermometers Pt-1000, RuO2 thermometers, 
and sliced Speer carbon resistance thermometers) monitors temperatures above 10 mK and (2) 
magnetic thermometry (CMN, Pt-NMR thermometers) is used for temperature below 20 mK.  
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Figure 1. The Vienna Nuclear Demagnetization
Refrigerator. A - Schematic vertical cross-section.  
B - Photograph (from 4 K plate on). 

Figure 3. A - Photograph of the Double-DeMAxesTM

MX-2 magnet system consisting of (1) upper
compensation coil, (2) 2D sample vector magnet
(combination of 8 T + 4 T magnet), (3) 9 T
demagnetization magnet. B - Photograph of the active
electro-pneumatic vibration isolation system consists
of (1) passive damping pads, (2) air spring pistons, (3)
2 tons platform. 

Figure 2. A - Photograph of the heat link and the Al
superconducting heat switch made up of (1) 40 copper
foils connected to the mixing chamber, (2) diffusion
welding contacts, (3) 40 Al foils, (4) 40 Cu foils connect to
the nuclear stage. B - Photograph of the heart of Pt-NMR
thermometer made up of (1) Pt brush, (2) Cu pick-up coil,
(3) silver foot, (4) M5 direct mounting thread to the
nuclear stage. C - Multilayer Nb/NbTi/Nb high magnetic
field shield. 
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Our superconducting magnet system (Double-DeMAxes, figure 3A) was manufactured by 
American Magnetics Inc. It consists of 3 superconducting magnets immersed in a helium bath of 150 
liters. The system with the magnets at maximum field in persistent mode can work continuously 
during 4 days until the next transfer of liquid 4He. The vertical field magnet for nuclear 
demagnetization has a bore of 78 mm and a maximum field at 4.2 K of 9 T, with a homogeneity better 
than 0.1% over 1 cm diameter spherical volume (DSV). The upper part of the coil has compensation 
windings which reduce the field to less than 100 G. The second vertical magnet is a solenoid coil with 
clear bore of 78 mm that generates a maximum field of 8 T at the sample position. The third magnet is 
a split-coil magnet that generates a maximum field of 4 T perpendicular to the solenoid fields. Both 
latter magnets have a field homogeneity about 0.5 % over 1 cm (DSV). This magnet system produces 
a rated field vector of 4 T magnitude in 2D space.  

3.   Nuclear stage 
The nuclear stage is made of a high purity copper rod (4N electrolytic Cu, NOSV from Aurubis, 
Germany) of 60 mm diameter and 450 mm length with 36 spark-cut radial slits of 0.2 mm width. The 
total mass of the copper nuclear stage is 10 kg; the effective amount in 9 T field is 90 moles. The 
copper nuclear stage was annealed in low pressure oxygen for 100 hours at 960C. The residual 
resistance ratio reached about 1000. In order to protect the copper nuclear stage against oxidation and 
to permanently ensure small thermal resistance of the contact surfaces, the entire stage was plated with 
a high purity gold layer. The nuclear stage was rigidly mounted to the mixing chamber plate by four 
thermally insulating carbon fiber tubes of 8 mm diameter, 2 mm wall thickness, and 500 mm length 
(figure 1B). The stage is protected against thermal radiation by gold plated copper shields, fixed at 50 
mK and at the still. 

4.   Thermal link and heat switch 
A thermal link (figure 2A) between the mixing chamber plate and the copper nuclear stage consist of 
80 copper foils (0.2 mm thickness, 13 mm width, 40 foils of 580 mm length and 40 foils of 70 mm 
length, 4N electrolytic copper NOSV from Aurubis, Germany), and 40 aluminum foils (0.2 mm 
thickness, 13 mm width, 30 mm length, 6N Specpure of Johnson Matthey). The Cu and Al foils were 
pressed using a stainless steel jig with molybdenum bolts and heated under high vacuum (10-6 mbar) 
for 30 minutes at 550C and for 12 hours at 450C. The switching field coil was made of 11868 turns 
of 67 µm diameter NbTi multifilament superconducting wire in Cu matrix on a brass holder, giving a 
field to current ratio of 3925 G/A. The coil was shielded from fringe fields with a multilayer 
Nb/NbTi/Nb cylinder of 50 mm length. The current required to switch Al to normal state is enhanced 
from 27 mA to 72 mA. At 6.45 mK a switching resistance ratio of 106 was reached. 

5.   Pt-NMR thermometer 
The heart of our thermometer consists of 4000 5N platinum wires of 20 µm diameter and 8 mm length 
and an NMR excitation coil being made of 1348 turns of 15 µm diameter copper wire. The bundle of 
Pt wires of 2.7 mm diameter was pulled through a 4N silver holder and welded to spherical cap. By 
this, the thermal contact among the Pt wires and the silver foot is established. The bundle of Pt wires 
and silver foot was annealed at 800C for 12 h in air to make stress free. This NMR pick-up coil with 
an inner diameter of 3 mm was placed over the platinum brush and fixed to its foot with a tiny amount 
of super-glue. The two leads for the coil were twisted together and glued onto the silver foot at several 
places for thermal anchoring (Fig. 2B). For making the field coil, a brass holder was wound with 
several Nb/Kapton turns filled stycast 1266 to improve the homogeneity of the magnetic field inside 
the coil. Then 12696 turns of 67 µm diameter NbTi multifilament superconducting wire in Cu matrix 
was wound on top. These coils were shielded from fringe fields with a multilayer Nb/NbTi/Nb 
cylinder of 50 mm length (figure 2C). 

6.   Vibration isolation 
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Isolation from vibrations is very important because they 
have two very serious effects: (1) the mechanical response of 
hysteretic heating as solid part of the devices flex and (2) 
Joule heating from eddy currents induced as metallic parts 
move in a magnetic field or vice versa. The latter effect can 
be particularly serious during precooling, when the nuclear 
stage is exposed to high magnetic fields of several T, or 
during transfer of liquid 4He. Our cryostat was hung into the 
2 tons platform of an active electro-pneumatic vibration 
isolation system (Figure 3B) with 3 degrees of freedom with 
the main advantages of yielding: (1) highly-effective isolation of vibration without resonance 
amplification, (2) optimal positional precision in both the vertical and horizontal direction, (3) 
minimal deflection and subsidence times with changing load, (4) highly-effective real-time control. 
The vibrations of the main pumping line were isolated by double T-pieces and wall-mounting. With 
this operation, the base temperature of the nuclear stage at 9 T before demagnetization was reduced 
from 30 mK to 6.45 mK.  

7.   Performance 
In the first run, without the copper nuclear stage mounted, the dilution refrigerator reached the lowest 
temperature of 3.15 mK. During the second run with the copper nuclear stage mounted but without a 
magnetic field applied, the base temperature of the nuclear stage was 6.45 mK (measured by the CMN 
thermometer). Upon magnetization, the temperature of the nuclear stage increased to around 60 mK 
(depending on the ramp rate of the magnetic field). In general, it takes 24 (100) hours to precool the 
copper nuclear stage to 15 (8) mK. One of the successful demagnetization processes started with the 
initial conditions Bi = 9 T and Ti = 6.45 mK and was done as follows. The field was linearly decreased 
in time using the sequential ramps at 1 T/h from 9 T to 4.5 T, at 0.5 T/h from 4.5 T to 2.25 T, at 0.25 
T/h from 2.25 T to 1.125 T, and at 0.1 T/h from 2.25 T to 20 mT. The lowest temperature measured so 
far by the Pt-NMR thermometer at a frequency of 158 kHz, located on the top of the nuclear stage, 
was 50.9 µK (figure 4) in a field of 52 mT on 27 March 2011. At this point, the temperature did not 
decrease further even though the magnetic field was still decreasing. This may be due to an 
insufficient thermal contact between the silver foot and the copper nuclear stage at temperatures below 
that point. We decided to keep the field at 50 mT until the temperature of the nuclear stage warmed up 
to 300 µK. 

8.   Conclusions and improvements 
A new nuclear demagnetization refrigerator was successfully constructed and installed at the Institute 
of Solid State Physics at Vienna University of Technology – as the heart of the newly founded Vienna 
Microkelvin Laboratory. In spite of harsh vibration conditions (the laboratory is situated in the centre 
of Vienna in the 5th to 7th floor) excellent performance (the lowest temperature measured by a Pt-NMR 
thermometer was 50.9 µK, the system was kept below 100 µK for several hours) could be 
demonstrated within only two months after delivery of the system. 

To optimize the system for the demanding planned experiments, further improvements are planned: 
(1) better damping of the vibrations of the pumping lines, (2) miniaturization and magnetic shielding 
of the heat link and the heat switch, (3) improvement of the thermal contact between the silver foot of 
the Pt-NMR thermometer and the nuclear stage, and of the pick-up coil and the nuclear stage, (4) 
testing and improving the thermal contact of the top-loading probe, (5) electromagnetic shielding. 
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Figure 4. A table showing (left) the lowest
temperature measured so far in the Vienna
Nuclear Demagnetization Refrigerator by a Pt-
NMR thermometer at 158 kHz and (right) the
free induction decay signal at 50.9 µK. 
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