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Abstract. Stark broadening of atomic lines in plasmas is investigated by generating the electric 
microfield with a renewal process. In this model, the microfield is stepwise constant, with 
jumping times sampled from a waiting time distribution (WTD). Our model is a true simulation 
of the renewal process, using random number generators for generating different probability 
density functions (PDF). The use of an equilibrium static microfield PDF and an exponential 
waiting time distribution reproduces the so called model microfield method (MMM) results. 
The work presented is an application to the hydrogen Lyman-α line, for which we compare our 
renewal process model and ab initio simulations calculations, with the aim of studying the role 
of non exponential waiting time distributions.  

1.Introduction 
 
Different approaches are used today for computing line profiles broadened by Stark effect. Particle 
based approaches have been used in early developments [1,2,3], and have recently been revisited for 
an inclusion of multiple simultaneous emitter-perturbers interactions [4]. Computer simulations are 
commonly used today with a combination of particle simulations and a numerical integration of the 
Schrödinger equation [5,6]. Such ab initio simulations provide useful references for developing other 
less computer intensive models. Using an efficient procedure for mixing Stark components, the 
Frequency Fluctuation Model is an example of such an approach, available as a line shape code able to 
compute an arbitrary atomic or ionic line [7]. This approach may be viewed as an example of a model 
microfield method, since it uses statistical properties of the microfield, together with a procedure for 
its time evolution. Model Microfield Methods (MMM) have first been proposed for Stark broadening 
by Brissaud and Frisch in 1971 [8], using a stochastic process. In the last decades, the MMM has been 
developed and applied to a large range of astrophysical conditions [9]. We report here about an 
alternative approach which consists of a numerical simulation for the stochastic process for the plasma 
microfield following a proposal made by Frerichs [10]. In section 2, we recall that the calculation is 
performed in the framework of the renewal process model, using stepwise constant values of the 
microfield. The simulation technique is described in section 3, and our first results are presented and 
discussed in section 4. 
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2.Renewal process for the electric microfield 
We consider a microfield which is stepwise constant, and jumps to a new value after a waiting time 
following a microfield dependent Waiting Time Distribution (WTD) v(t|E) for the first step. Also for 
the first step, the microfield modulus E is distributed according to a Probability Density Function 
(PDF) P(E). We assume that the plasma is isotropic, with each new value of the microfield vector 
characterized by its modulus and a random direction. In the following, the average over all directions 
of the field will be performed analytically on the evolution operator of the atom. For a stationary 
renewal process, the microfield PDF for all but the first step is changed to Q(E), and the WTD is 
changed to w(t|E). The relations between the first step and next steps PDF and WTD is obtained by 
writing the stationarity conditions, i.e. imposing that a measure starting at time t=0, is identical to a 
measure at an arbitrary time. The following relations then hold [11]: 
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Symbol <..>S denotes a static average taken over P(E), and Eν  is a jumping frequency equal to the 
inverse of the time on a step averaged over the initial WTD. It should be noted that the relations (1) 
and (2) are different from the corresponding relations in reference [11], since they are not expressed 
with the WTD at time t=0, but with the microfield dependent jumping frequency. This more general 
formulation is found in the work of Haus and Kerr on stochastic processes [12]. From these relations, 
it is clear that the statistical properties of a stationary renewal process are determined by the microfield 
PDF P(E) and WTD v(t|E). In the case of a Markovian process, one recovers the Kangaroo process, 
with a WTD: 
 
    ))v(exp()v()w()v( tEEEtEt −== .   (3) 

The choice of an exponential WTD has been made for most applications of the so called model 
microfield method, since it allows one to write a rather simple solution for the line shape. This choice 
implies that the stochastic process has a jumping rate which is constant over time, and it may be 
interesting to investigate if this has any impact on the line shape. Renewal processes are commonly 
used in survival analysis (for instance in the study of lifetime of manufactured products), and the first 
choice for the WTD is an exponential function. For processes which are supposed to be affected by a 
time dependent jumping rate, an alternative WTD is often given by a Weibull function: 
 
    { } { }[ ]αα νναν ttEt EEE −= − exp)u( 1 ,    (4) 

where the shape parameter α is a real positive number, and Eν  is a microfield dependent jumping 
frequency equal to the inverse of the average time on a step <t> obtained with the Weibull WTD. It is 
now necessary to calculate the new Q(E) and w(t|E) with this WTD. One should note here by 
considering equation (2), that since u(t|E) and w(t|E) are non-negative probability densities, u(t|E) 
must be a monotonically decreasing function [11]. This restricts the use of a Weibull distribution to 
values of α<1, cases for which the jumping rate decreases over time. Using equations (1) and (2), it is 
possible to express Q(E) and w(t|E), but we first need to write the average time on a step as: 

XXI International Conference on Spectral Line Shapes (ICSLS 2012) IOP Publishing
Journal of Physics: Conference Series 397 (2012) 012006 doi:10.1088/1742-6596/397/1/012006

2



 
 
 
 
 
 
 

    
E

dtEtutt
ν

α
)11(

)(
0

+Γ
== ∫

∞

,    (5) 

where Γ is the gamma function. Using equation 4, the WTD w(t|E) for all but the first step may be 
written as: 
 
    { } { }[ ] { }ααα ννααναν tttEtw EEEE −+−= − exp1)( 2   (6) 
 
The survival probability of a microfield during a time interval t is obtained by the time integral of the 
WTD from t to infinity. Using this probability, it is then possible to write the microfield 
autocorrelation function for the renewal process ΓRP as: 

    { }αν tEEPdEt ERP −=Γ ∫
∞

exp)()(
0

2 .    (7) 

This autocorrelation function for the renewal process should be chosen so as to reproduce the true 
function obtained from plasma kinetic theory. In the following , we will use the theoretical expression 
known from the work of Rosenbluth and Rostoker [13]: 
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   Figure 1. Sum of two histories for the dipole correlation 
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where τ=tωp/21/2 and ωp=(4πNe2/m)1/2 is the plasma frequency for particles of mass m, density N and 
temperature T. We denoted the average distance between charged particles by r0, and the Debye length 
by λD=(kT/4πNe2)1/2. The dimensionless microfield β=E/E0 is reduced in units of the Holtsmark field 
that we define as E0=e/r0

2. Equalizing equation (7) and (8) allows one to obtain the frequency Eν as a 
function of the microfield. 
3. Line shape calculation with a stochastic process 
The line profile is obtained with a Fourier-Laplace transform of the dipole autocorrelation function 

Cdd(t): 

     ρ)().()( tUdtUdTrtCdd
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In this expression, the trace is over atomic states, d
r

 is the atomic dipole operator, ρ the density 
matrix, and the brackets denote an average over the charged particles. The atomic evolution operator 
obeys to a Schrödinger equation: 

     )()]([)(
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where H0 is the atomic Hamiltonian and )(.)( tEdtV
rr

−= the dipolar interaction potential of the atom 
with the plasma microfield. As described in section 2, the microfield is assumed to follow a stepwise 
constant stochastic process with prescribed PDF and WTD, and we use the computer to generate 
microfield histories with pseudorandom numbers algorithms, associated to transformation or rejection 
methods. At each step, the microfield is constant, and so is the evolution operator. The evolution 
operator for n steps may be written as a product of constant operators in time intervals ti-ti-1: 
 
    U(tn,0)=U(tn, tn-1) U(tn-1, tn-2)……U(t1,0).   (11) 

The evolution operator is thus obtained by an iteration from one step to the following:  
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where jE
r

 is the constant microfield applied on the atom during jj ttt −=Δ +1 . With this 
approach the solution of the Schrödinger equation is obtained by multiplying matrices 
representing )( 1−− jj ttU , a procedure which is much more efficient on the computer than 
those used for ab initio simulation. Summing finally over a large number of such time 
histories of the microfield, it is possible to obtain a smooth averaged evolution operator, since 
every history has a different time grid. This calculation may be applied to both the ionic and 
electronic components, using for instance the joint jump approximation [10]. Our first 
calculations using this simulation of the stochastic process have been applied to the ionic 
component only. The effect of electron broadening may be retained in our calculation with an 
impact electronic operator.  
 
4. Results  
Calculations performed for this work have been applied to the Lyman α line of hydrogen, 
neglecting the fine structure. We first reproduce the calculations of the MMM, with a PDF 
P(E) calculated by Hooper [14], and an exponential WTD. An example of the sum of two 
histories is shown on figure 1. Repeating this summation procedure over several thousands 
microfield histories, it is possible to obtain a smooth dipole correlation function. We have first 
studied the angular average over the microfield angles. It is possible to generate for each field, 
two microfield angles, and retain the angular dependence for each )( 1−− ii ttU . After an 
average over a large number of field histories, we have checked that such a calculation leads 
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to the same averaged evolution operator as a calculation performed using an analytical 
angular average on each )( 1−− jj ttU . Calculating then the dipole correlation function for a 
density N=1017 cm-3, and a temperature of 104 K, and performing a Laplace-Fourier 
transform, our calculation reproduces the profiles of the MMM for the Lyman α line in the 
case of ion broadening and impact electrons [15]. We have plotted on figure 2 the dipole 
autocorrelation function for Lyman α broadened by ions only and calculated with our 
technique (dashed line), and have compared it to an ab initio simulation (solid line). It can be 
seen that a standard MMM calculation applied to ions alone is significantly different from the 
ab initio simulation. This is a strong indication that the stochastic process may be improved 
for the ionic component. There is however no clear indication of how this should be done, and 
our proposal is to change the WTD as explained in section 2. The work underway consists in 
using the four functions P(E), Q(E), u(t|E) and w(t|E) in the case of a Weibull WTD, in an attempt 
to improve the agreement between our present technique and the ab initio simulation. 
 

 
 
 
Figure 2. Lyman α dipole correlation function calculated with our simulation of the 
stochastic model (dotted line), and an ab initio simulation (solid line) 
 
5.Conclusion 
We have developed a simulation calculation with a renewal process for the plasma microfield, 
coupled to an efficient algorithm for calculating the dipole autocorrelation function of the 
emitter. Revisiting the basic assumptions for the stochastic process applied to Stark 
broadening, we have proposed the use of a Weibull WTD for the test of a time dependent 
jumping process. We have derived expressions for the four probability density functions 
required for the line shape calculation, as well as a procedure for obtaining the microfield 
dependence of the jumping frequency. The first calculations have shown the applicability of 
our model for reproducing the standard MMM calculations for the Lyman α line. Applied to 

XXI International Conference on Spectral Line Shapes (ICSLS 2012) IOP Publishing
Journal of Physics: Conference Series 397 (2012) 012006 doi:10.1088/1742-6596/397/1/012006

5



 
 
 
 
 
 
 

ion broadening only, and compared to ab initio simulations, our calculations are a clear 
indication that the stochastic process could be improved. Work is in progress for using the 
Weibull or other non exponential WTD 
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