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Abstract. Low frequency Radar imaging can be used to reconstruct the global shape of targets 

using the ramp response technique, which only needs no more than 3 observing angles. We 

have developed a new algorithm permitting to generate promising shapes of targets for 

mutually orthogonal directions, but giving distorted results otherwise. To solve this ill-posed 

inverse problem, we use the level set method, which iteratively deforms the shape of the target 

under a velocity field, and we analyze the property of the desirable velocity. Numerical results 

obtained by this method in arbitrary directions are given as well. 

1. Introduction 

Among inverse scattering methods for radar imaging, the ramp response technique [1] only needs no 

more than 3 observing angles. The ramp response, which is the transient scattering response from an 

incident wave in the form of ramp, is related to the cross-sectional area of the target perpendicular to 

the observing direction. This area, named profile function, can be used to reconstruct the global shape 

of the target. The reconstruction algorithm originally proposed by Young [2] has been applied for 

years to image scattering [3-5], as well as to underwater acoustic imaging [6]. This algorithm is 

limited to convex and single objects, that is why we developed a new algorithm [7] able to overcome 

this limitation. Both algorithms work well for mutually orthogonal directions, while they produce 

distorted shapes of the target in non-orthogonal cases. 

Therefore, an optimization procedure is required to evolve towards a promising estimate by 

minimizing the cost functional. The level set method, devised by Osher and Sethian [8] [9], represents 

the evolving object as the zero level of an implicit higher dimensional function. This allows topology 

changes, such as splitting and merging of connected components during the deformation of the object, 

in a completely automatic and implicit manner. This advantage is of great importance for inverse 

problem since it requires no a priori assumption about the object geometry. It has been proved to be 

effective in retrieving separated objects from a single initial guess and has been illustrated in the 

inverse scattering problem [10-12]. Consequently, we apply this method to obtain a satisfactory shape 

of the target. 

2. Image reconstruction from profile functions  

The ramp response of a target, hr (t), is defined by the far zone transient scattered wave resulting from 

illumination by a plane electromagnetic wave with a temporal ramp wave shape. In time domain, it is 
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the second integral of its impulse response, hi (t) and it can be expressed as the Inverse Fourier 

Transform (IFT) of the weighted transfer function, Hr (jω) :  
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The monostatic ramp response is directly related to the profile function of the target, A(u), which is 

the transverse cross-sectional area of the target as a function of the distance along the line-of-sight [1] 
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where c is the speed of light in free space, t the time variable, and u the space variable. 

Using as target the example of figure 1(a), two types of profile functions (PF) are compared in 

figure 1(b): 1/ the ideal PF, “geometrical”, equal to the cross-sectional area A(u), for u = x,y,z ; 2/ the 

real PF, “physical”, calculated by (2) from the ramp response. To ensure that the physical PF is a valid 

estimate of the geometrical PF, it is necessary to match the frequency band to target dimensions, 

choosing the upper Rayleigh region and the resonance region of the target. 
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(a) (b) (c) (d) 

Figure 1. (a) Configuration of a radar target; (b) geometrical and physical profile functions 

in 3 orthogonal directions: x, y, z; (c) reconstruction with 3 mutually orthogonal directions; 

(d) reconstruction with arbitrary directions.  

 

The original algorithm, proposed by Young [2] for 3D reconstruction from ramp responses, is 

limited to convex and single object. We have therefore developed a new algorithm [7], which is able 

to overcome this limitation by exploiting more effectively the information contained in the profile 

functions. With 3 geometrical profile functions of the object in figure 1(b), the resulting reconstruction 

with mutually orthogonal directions, figure 1(c), shows a high similarity with the original object. 

Considering now the case of arbitrary directions (with one direction at 50° in plane xoy, and the other 

two directions unchanged along y and z), the reconstructed result is distorted, figure 1(d). 

3. Optimization using the level-set method 

To improve the performance of this algorithm for arbitrary directions, it is necessary to use an iterative 

process to obtain an optimal estimate of the target by minimizing the mismatch between the data, i.e. 

profile functions of the unknown object, and the profile functions of the updated object.  

Our problem can be formalized in the form of  

 dd guA =  (3) 

where g
d
(M,1) is the observed data, the PF in direction d, u(N,1) the vector representing the unknown 

binary object we are looking for, A
d
(M, N) the observing matrix (or mapping matrix) and d the index 

number of direction. d=1, 2, 3 in our case with three observing directions. 
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3.1. The forward problem 

The forward problem, at step k, consists in calculating the profile functions of the evolving object with 

the following equation: 
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For this, we developed an algorithm to calculate the profile function of a 3D object in an arbitrary 

direction: its principle is to distribute the pixels of the object in successive cutting planes 

perpendicular to the chosen direction. With the definition of profile functions, A
d
(i,j) represents the 

contribution that the pixel u(j) gives to the slice i, and the profile function is obtained by summing 

individual contributions from all pixels. At iteration k, we define the cost functional, Fk , as the norm 

of the error between the PF calculated from the evolving object, gk , and the PF observed from the real 

object, g: 
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Applying the proposed algorithm, the three geometrical profile functions are compared in figure 2 

with those calculated from the initial guess reconstructed from orthogonal (figure 1(c)) as well as 

arbitrary directions (figure 1(d)). In the orthogonal case, the cost function is negligible (F0 = 0.02), 

whereas it is much more significant in the non-orthogonal case (F0 = 0.16). Therefore, the cost 

functional behaves as a quantitative indicator for the evolution and quality evaluation of the estimate. 
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(a) (b) 

Figure 2. Comparison between the 3 geometrical PF with those calculated from the reconstruction of 

figure 1(c) and (d): (a) orthogonal case;  (b) non-orthogonal case. 

3.2. The inverse problem 

Most of iterative methods evolve the explicit function of object shape during the iteration. On the 

contrary, the level set method represents the shape as the zero level of a higher order level set function, 

which requires no a priori assumption on the object geometry or structure. In a computational domain 

D enclosing the object Ω, the level set function φ(x) is defined as: 
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where x is the position variable, (x, y) and (x, y, z) for 2D and 3D case respectively, and C is the 

contour of the object. The deformation of the object is formalized as a Hamilton-Jacobi equation for 

the level set function φ under a normal velocity field V [8]: 
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Following the formulation in [13], a common choice of velocity is: 

 ))(()( oi

T uuuFuJV −−=  (8) 

where J(u) is the Jacobian of F(u) at u. ui and uo are the prescribed values to represent the inside and 

outside of the desired unknown. In our case, uo = 0 and ui = 1 represent the binary unknown. 

Shape deformation, ‘expand’ or ‘shrink’, is directly related to the change of the level set function, 

which is mainly determined by the sign of the velocity. From (7), when V is positive, φ decreases, 

therefore the shape expands in the normal direction of the contour; whereas, when V is negative, the 

shape shrinks. In the computational domain, as compared with the real object, the evolving object 

might have “correct pixels”, Pc, “missing” pixels, Pm, which belong to the real object but are not 

selected by the evolution, and “false” pixels, Pf, which are in the opposite situation. The aim of the 

shape optimization is to iteratively fill up Pm and remove Pf. These two “actions” are directly related to 

the change of the level set function, which is determined by the sign of the velocity.  Therefore, an 

effective velocity should have the properties shown in Table 1, where the subscript ‘e’ represents the 

evolving object and ‘r’ the real object. For Pm, the level set function φ should decrease, so V is positive, 

while for Pf, φ should increase, so V is negative. 

Table 1. Properties of desirable velocity. 

Pixel Pm  Pf 

ue 0 1 

ur 1 0 

φe >0 <0 

φr <0 >0 

φ  ↓  ↑ 

V >0 <0 

 

An example is given to explain how the velocity works during the evolution. Figure 3(a) compares 

the real object (red part) and the estimate (blue part) in a cut-plane of the computational domain. 

Therefore, there are some “missing” pixels, Pm, and “false” pixels, Pf, (figure 3(b)). According to the 

property of desirable velocity in table 1, figure 3(c) shows that the velocity is positive for Pm and 

negative for Pf. Therefore, after one iteration, all “false” pixels are removed well and some “missing” 

pixels vanish (figure 3(d)). Remaining “missing” pixels will be corrected after a few iterations with the 

positive velocity.     
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Figure 3.  (a) Comparison between the real object and the estimate; (b) the initial cut-plane; (c) the 

velocity for each pixel in this cut-plane; (d) the cut-plane after one iteration.  

 

2nd Int. Workshop on New Computational Methods for Inverse Problems (NCMIP 2012) IOP Publishing
Journal of Physics: Conference Series 386 (2012) 012011 doi:10.1088/1742-6596/386/1/012011

4



 

 

 

 

 

 

4. Numerical results 

Now we consider to reconstruct a PEC cube (figure 4(a)) with the level set method. The 

computational domain is distributed into N=16
3
 cells, with 16

2
 pixels in each cut plane. To apply this 

method, an initial guess is required. It can be arbitrary, and we choose here a rectangular box to test 

the performance or this method, since it needs either to “expand” or to “shrink” for obtaining the shape 

of the original cube. Once the initial contour C0 is given, the initial level set function φ0 is defined as 

the signed distance between each point and C0, negative inside and positive outside [10]. The gradient 

of the level set function, ϕ∇ , is approximated by a Hamiltonian scheme [8]. Combining (5) with (8), 

the velocity can be easily obtained by the algorithm we proposed in the forward problem. 
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Figure 4.  (a) Configuration of a PEC cube; (b) the initial guess: a rectangular. 

 

Here, we use the geometrical profile function as the observed data of the real object. With 3 

mutually orthogonal directions and 20 iterations, the reconstructed result (figure 5) shows high 

similarity with some acceptable errors comparing to the real object. For the non-orthogonal case 

(d1 = 45°,y,z),  the estimate (figure 6) has more “missing” and “false” pixels, but still it is not severely 

distorted. Now if we add another direction (d4 = 60°), the result (figure 7) shows greater agreement 

with the real shape. It is worth mentioning that more accurate images can be obtained with a larger 

number of samples. 

5. Conclusion and perspectives 

Radar imaging from ramp responses can reconstruct the shape of a target with only three directions. 

Our reconstruction algorithm overcomes the limitation of previous algorithms for orthogonal 

directions, but it produces distorted estimate in non-orthogonal case. The calculation of the profile 

function of a 3D object is used to compute the cost function for the evolution process. The level set 

method, which has been proved to be effective in shape optimization, is used. The property of an 

effective velocity for this method is analyzed. This method gives good results with 3 orthogonal 

directions and promising results with 4 non-orthogonal directions without restrictive requirement of 

the initial guess. Our further work is to construct an adapted cost functional so that the velocity 

satisfies desirable properties. The regularization of the evolution, for example uniqueness and 

convergence, should be considered as well.  
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Figure 5. Result obtained with 3 mutually orthogonal directions after 20 iterations 
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Figure 6. Result obtained with 3 non-orthogonal directions (d1=45°) after 20 iterations 
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Figure 7. Result obtained with 4 non-orthogonal directions (d1=45°, d4=60°) after 20 iterations 
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