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Abstract. Polycrystalline rhenium in the form of a powder contained in a two-stage gasket was 
compressed in a diamond anvil cell. No pressure medium was used to ensure that maximum 
nonhydrostatic stresses that rhenium can support were produced. The pressure was increased in 
steps to a maximum of 250 GPa and the diffraction pattern recorded at each pressure using 
energy dispersive technique. The differential stress t, a measure of the compressive strength, 
was determined at any given pressure from the offset between the measured unit cell volume 
and volume computed from the pressure-volume relation under hydrostatic pressure. The data 
suggest that t is 2.5 GPa at a pressure of 5 GPa and increases linearly to 26 GPa at 250 GPa. 
The present data agree well with those obtained from the radial diffraction data to 37 GPa in an 
earlier study but differ significantly from the results of another study. Though comparable with 
the theoretical strength of ideal solids, the observed strengths are extremely large for a 
polycrystalline aggregate of a solid. The pure pressure effect on the strength described by the 
shear modulus scaling is inadequate to account for such a large increase of strength with 
pressure . It is suggested that the major contribution to strength comes from the strain hardening 
of rhenium that arises due to plastic deformat ion of the sample during nonhydrostatic 
compression in a diamond anvil cell.  

1. Introduction  
Rhenium, a group-VII transition metal, crystallizes in the hexagonal-close-packed (hcp) structure. 
Measurements of the volume change produced by static [1] and dynamic [2] pressures indicate that Re 
is highly incompressible. High-pressure x-ray diffraction studies [3] do not indicate any pressure-
induced phase transition up to 216 GPa and suggest a nearly pressure independent c/a-ratio. Ultrasonic  
velocity measurements give high values of the single-crystal elastic moduli confirming the low 
compressibility of Re [4]. First-principles computations of the elastic moduli [5, 6] and their pressure 
derivatives are found to be in reasonable agreement with the ultrasonic data.  From the consideration 
of the Gibbs free energies of the hcp and body-centered-cubic  (bcc) structures, Kaufman [7] suggested 
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that Re might transform to the bcc phase at high pressure. However, first-principles calculations 
predict that hcp Re is stable to pressures in the range of a terapascal [8].  

The increase in the yield (flow) stress of Re with increasing plastic deformation, termed strain or 
work hardening, is found to be the largest of all metallic materials [9,  10]. The successful use of Re as 
a gasket material in high-pressure studies with a diamond anvil cell is due to the fact that it develops, 
on compression, high enough compressive strength to retain appreciable thickness even at several 
hundred gigapascal without any “punch-through” at the edges of the diamond anvils. Two studies [11, 
12] carried out in the past reported the strength of Re as a function of high pressure. The first study 
[11] combined the pressure-volume data measured under nonhydrostatic compression and that under 
hydrostatic  pressure to estimate the strength under pressure up to 120 GPa. The second study [12] used 
radial diffraction data to determine the strength to 37 GPa. In this study, we derive the compressive 
strength of Re as a function of pressure up to 250 GPa using an approach that is essentially same as the 
one used in the earlier study [11]. However, the equations we use to analyze the data are based on the 
lattice strain theory [13−19] and differ from that used in the earlier study [11].  

2. Experimental details 
X-ray diffraction experiments were carried out at the wiggler beam line X17C of the National 
Synchrotron Light Source of Brookhaven National Laboratory, using the energy dispersive x-ray 
diffraction method. A diamond anvil cell with a pair of bevel diamonds was used. The culet size of one 
of the diamonds was 0.17 mm flat face and 0.48 mm at the beveled edge and that of the second 
diamond differed slightly (0.19 mm and 0.49 mm). A two-stage gasket was used to contain the Re 
sample. The outer gasket consisted of a pre-indented 0.025mm thick stainless steel disk with a 0.090  
mm central hole. A 0.025 mm-thick Re disk with a 0.040 mm sample hole was inserted in the hole of 
the stainless steel gasket. Re powder (99.99%) mixed with Pt-powder was loaded in the 0.040 mm 
hole. Pt was used as a pressure standard. The primary incident beam slit was 0.1×0.1mm2 and the 
collimator was 0.010×0.010 mm2. The first receiving slit was 0.15×0.35 mm2 and the second receiving 
slit was 0.1×5 mm. An intrinsic solid state Ge-detector was used to record the diffraction patterns . A 
fixed 2θ0 = 20° was used in the experiments.  

3. Lattice strain equations  
The stress state of a solid sample under nonhydrostatic compression is axially symmetric about the 
load axis of the diamond anvil cell and is described by two equal stress components σ 11 along the two 
orthogonal set of axes parallel to the anvil face and a component σ 33 along an axis parallel to the load 
axis. The off-diagonal terms in the stress tensor are assumed to be zero. This assumption is  not always 
valid in practice. The effect of the breakdown of this assumption on the lattice strain theory has been 
discussed in detail elsewhere [20, 21]. The difference (σ33 −  σ 11) is denoted by t, and its maximum 
value is limited by the compressive yield strength at the confining pressure that equals the mean 
normal stress (2σ11 +σ33)/3. At a given pressure, the unit cell volume Vm measured under 
nonhydrostatic compression is larger than VP, the unit cell volume under hydrostatic compression. As 
shown earlier [14], t is given by the relation 
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In terms of the shear modulus, equation (3.1) can be expressed as 
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K,µ and ν denote the aggregate bulk modulus, shear modulus and Poisson’s ratio, respectiv ely. The 
negative sign in Eq. (33) of the earlier paper  [14] appears because the convention of taking 
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compressive stress as negative was used. Noting that the pressure offset is given by ∆P = K [(Vm − VP) 
/ V P], equation (3.1) can be rewritten as  
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Here, ∆P = (Pm - Ph). The terms Pm and Ph are pressures computed from the P-V  relation measured 
under nonhydrostatic and hydrostatic compressions, respectively, at a fixed V/V0. Equations (3.1), (3.2) 
and (3.3) are equivalent if P at which Vm and VP in (3.1) are computed is chosen at (Pm + Ph)/2. It may 
be noted that the elastic moduli in these equations are to be taken at the relevant pressure.  

4. Results 
The diffraction pattern recorded at 251 GPa is shown in figure 1. The pressure in each run was 
determined by using the measured volume compression of Pt in the equation of state proposed by 
Holmes et al [22]. The cell volumes Vm were determined from the measured d-spacings. These values 
together with the data obtained by Jeanloz et al. [11] are shown figure 2. To determine P-VP data under 
hydrostatic pressure the fourth order Birch equation given below was used 
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Here, F , and f, are the normalized pressure and Eulerian strain, respectively. K0 is the zero-strain bulk 
modulus, and a1, and a2 are functions of K0, K0′, and K0″ [23]. The single and double primes indicate 
the first and second pressure derivatives of the bulk modulus at zero strain. Equation (4.1) was fitted to 
the pressure-volume data obtained from shock wave measurements [2]. This gave K0=364.97(±0.64), 
a1=0.48(±0.05) and a2=−2.03(±0.33). The P-VP data computed from equation (4.1) with these 
constants are shown in figure 2 by continuous lines. It may be noted that the constants in equations 
(4.1) used by Jeanloz et al [11] are significantly different from those used in this study. However, the 
P-VP data computed from the constants used by Jeanloz et al. [11] do not show any significant 
difference with the present data up to 150 GPa. The strength t was determined from equation (3.2). 
The pressure dependent µ required for these calculations was determined using µ0 = 179 GPa and µ0' = 
1.8 in the Birch equation [24] viz.:  
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The term (1 – 3sin2θ0) appearing in equation (3.2) equals 0.91 here and is constant for all reflections. 
The compressive strength t determined in this study as a function of pressure is shown in figure 3. The 
error bars indicate standard errors arising only from the uncertainty in Vm. Uncertainties in µ and VP are 
hard to estimate. The strength data from the earlier studies [11, 12] are also shown in f igure 3.   

5. Discussion 
The pressure-volume data from this study and an earlier measurements to 119 GPa [11] are shown in 
figure 2. To compare the data from two studies we fitted the third-order Birch-Murnaghan equation  to 
each set of data. The computed V0 /Vm from this study is larger than that from [11] by 0.3% at 20 GPa 
and increases to 0.6% at 120 GPa. Though not relevant to this comparison, the difference begins  to 
decrease above ∼150 GPa and vanishes at ∼225 GPa. The trend is reversed above 225 GPa. These 
differences are small in comparison with the combined errors of measurements in the two studies. It is  
seen that at any given pressure, Vm > VP due to the effect of nonhydrostatic compression.  
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Figure 1. Diffraction pattern of Re. 
Figure 2.  Volume compressions data under 
nonhydrostatic (symbols) and hydrostatic pressure. 
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Figure 3. Strength of Re as function of pressure. Dots – present data, circles – Duffy et al. [12], 
triangles – Jeanloz et al. [11], and squares – recomputed from equation (3.2) using measured Vm 
from [11]. Solid line – straight line fit through dots, circles, and squares gives t = 2 + 0.096P. 
Dashed line – shear modulus scaling taking ambient pressure strength as 1 GPa. 
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Duffy et al. [12] used radial diffraction data to determine the strength. It is seen from figure 3 that 
the strength data of Duffy et al. [12] are in good agreement with the present data. This agreement is not 
surprising as both the present set of formulae and those used by Duffy et al are based on the same 
lattice strain theory. The results of Jeanloz et al. [11], however, show large differences. Since the 
measured unit cell volumes under nonhydrostatic  compression and the computed V P in [11] are in 
excellent agreement with those in this study, the differences in estimated strength solely arise due to 
the fact that the formula used to derive the strength differed in the two studies. It can be easily verified 
that equation (4) of [11] gives  t that is ∼3-times larger than t obtained from equation (3.3) for any 
given set of experimental data.  

The pure pressure effect on yield strength is given by shear modulus scaling [25]. The ambient  
pressure yield strength of Re reported in the literature varies in the range 0.7-1.3 GPa [9]. Taking the 
ambient-pressure shear modulus as 179 GPa and yield strength as 1 GPa, the shear-modulus scaling 
suggests that the strength of Re under pressure is given by 0.006µ. Considering the pressure 
dependence of µ,  this effect predicts strength of ∼5 GPa at 250 GPa. The strength measured in this 
study varies from 0.01µ  at 2.5 GPa to 0.04µ  at 250 GPa. These magnitudes, though comparable with 
the strength of ideal solids [26–28] ar e extremely large for the polycrystalline aggregate of a real solid. 
The plastic deformation during nonhydrostatic compression of the sample in a diamond anvil cell is an 
important factor in the interpretation of strength derived from the diffraction data.  It changes the state 
of the sample in two ways: The crystallite size [29–31] and the sample thickness decrease with 
increasing compression. This decrease in grain size results in an increase in strength following the 
Hall-Petch relation [32, 33] 

 2/1
HP0Y / DK+= σσ  (5.1) 

Here, σ 0 is the yield strength at one atmosphere and D is the grain size, which is taken as the crystallite 
size determined from diffraction line-width analysis [29–31]. The term KHP is a material-dependent 
constant called strengthening coefficient or the Hall-Petch parameter. In absence of the information on 
the grain-size reduction under nonhydrostatic compression and KHP  of Re, the quantitative estimate of 
the grain-size contribution to strength is not possible. However, the magnitude of strengthening from 
this source can be estimated by assuming the value of KHP for pure Re as 12 GPa/√nm, a value close to 
those for hexagonal metals. With this value of KHP, a grain size in the range of 10-20 nm at 250 GPa 
would account for a strength increase in the range of 3–4 GPa. Thus, the contribution to strength from 
both the shear modulus scaling and grain-size factor together is ∼10 GPa at 250 GPa. The major 
contribution to strength of Re comes from the effect of plastic deformation on the flow (yield) stress 
known as strain or work hardening. The strain hardening effect is described by the relation [34], 

 nkεσ =Yf,  (5.2) 

Here, σ f, Y is the flow or yield stress, k and n are material constants, and ε is the plastic strain. With the 
experimenta values [10], k = 28.7 GPa and n = 0.78 [10], Re shows the highest strain hardening effect 
of all metals. Equation (5.2) suggests that plastic strain of ∼50% at 250 GPa can result in a 
strengthening of ∼16 GPa. Such large plastic strains are not inconceivable at high nonhydrostatic 
compression. The constants k and n are expected to be pressure dependent [35].  

In conclusion, the strength of Re at high pressure determined by x-ray diffraction is found to be 
extremely large. The increased strength under pressure cannot be explained by shear-modulus scaling. 
It is pointed out that the nonhydrostatic compression, which is essential for the strength determination 
by the diffraction method, causes severe plastic  deformation of the sample. This results in the 
reduction of the crystallite size and sample thickness leading to strengthening due to grain size and 
work hardening. In the case of Re, work hardening effect appears to be the dominant factor leading  to 
strengthening under pressure. 
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