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Abstract. A modern railway system relies on sophisticated monitoring systems for 

maintenance and renewal activities. Some of the existing conditions monitoring techniques 

perform fault detection using advanced filtering, system identification and signal analysis 

methods. These theoretical approaches do not require complex mathematical models of the 

system and can overcome potential difficulties associated with nonlinearities and parameter 

variations in the system. Practical applications of condition monitoring tools use sensors which 

are mounted either on the track or rolling stock. For instance, monitoring wheelset dynamics 

could be done through the use of track-mounted sensors, while vehicle-based sensors are 

preferred for monitoring the train infrastructure. This paper attempts to collate and critically 

appraise the modern techniques used for condition monitoring of railway vehicle dynamics by 

analysing the advantages and shortcomings of these methods.         

1.  Introduction 

The 21st century has brought more pressures to the railway industry stakeholders to deliver more. 

Currently, there has been an increase in demand from rail commuters for affordable and high quality 

services. Since rail plays a crucial role in stimulating economic growth, legislators are demanding for 

a more sustainable industry. These challenges serve as an opportunity for the industry to invest more 

on the right technology. For example, a 24 x 7 railway requires the minimisation of disruptions caused 

by activities such as inspection, remedial, remove and reactive maintenance, and track renewal. So, it 

is necessary to conduct more effective inspection and maintenance in less time by optimising and 

automating these activities where possible. To avoid unplanned outage so as to meet the growing 

demands on cost efficiency, reliability and safety for railway vehicles, the argument for implementing 

intelligent condition monitoring systems is highly desirable.  

The dynamics of a railway vehicle represents a balance between forces acting at the wheel-rail 

interaction, suspension forces and inertia forces. The excessive response of the rail vehicle to track 

irregularities can result in poor guidance and ride quality which may increase wear on the wheel and 

rail, and can lead to derailment [1]. The modern intelligent railway vehicle relies on sophisticated 

monitoring systems to foresee its overall dynamic behaviour during normal operation and identify 

imminent critical conditions. Several concepts and tested hypotheses have been developed to monitor 

these dynamics that are unique to railway vehicles.  

A number of techniques have been utilised to perform fault detection in railway vehicles. They 

include, advanced filtering, system identification and signal analysis methods. These techniques are 
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used to detect and identify faults that deteriorate with time [2]. Although, the railway vehicle is a 

dynamically-complex multi-bodied system that is highly nonlinear, these approaches require less 

complicated mathematical models of the system and can overcome potential difficulties associated 

with nonlinearities and parameter variations. 

The practical application of condition monitoring of the train dynamics are done either through the 

employment of track-based sensors or vehicle-based sensors. Mostly, the track bed-based sensors are 

used to monitor the condition of wheelset, whereas, the rolling stock-based sensors are concerned with 

the monitoring of the rolling stock infrastructure. Modern rolling stock is fitted with high-capacity 

communication buses and multiple sensors which require advance processing units for data collection 

and management. For instance, an on-board data processing unit should have decision-making 

capabilities, hence, should be able to decide how much data to store depending on the severity of the 

fault and priority of notification.   

This paper aims to give an overview of the existing condition monitoring techniques applied to 

monitor railway vehicle dynamics. Section two presents the model-based techniques (Kalman filters; 

extended Kalman filter; sequential Monte Carlo method (Rao-Blackwellised particle filter)) used to 

estimate the dynamics of the rail vehicle systems. The section also describes the signal - based 

techniques (band-pass filter; spectral analysis, wavelet analysis; Fast Fourier Transform) which are 

used to detect the wheel faults. Section three describes some practical applications of condition 

monitoring systems employing vehicle based and track based sensors. Also the emerging technologies 

that may be available in the future for effective wheelset condition monitoring are analysed.  

2.  Condition monitoring techniques  

The significance of employing advanced information technology for condition monitoring purposes in 

industries is highly appreciated. The condition monitoring technique has considerably evolved over 

the years since it began as a measurement-oriented strategy. More emphasis now has been placed on 

computer-based stratagem. More reliance on computer systems is as a result of their efficiency in 

sending, storing and analysing large amount of data. Measuring instruments are using standard 

computer components and operating systems in order to be cost effective. These changes offer new 

possibilities for utilising condition monitoring of various system parameters and also, the integration 

of several disciplines in the field of condition monitoring and diagnosis which existed independent of 

one another [3].  

In order for the railway industry to successfully implement condition-based maintenance, a good 

condition monitoring tool which can predict or detect incipient faults in real time is required. It has 

been accepted that, when a fault is imminent, there is certainly parametric deviation within the system. 

In such instances, parameter and state estimation techniques are more likely preferred for information 

extraction. Quite often direct measurements of parameters, especially for the rail vehicle dynamic 

system are not readily available due to several limitations, for example, high cost of implementation, 

or lack of adequate technology. Generally, condition monitoring for railway vehicle systems aids in 

reducing unscheduled downtime by allowing appropriate maintenance to be scheduled.  

A proper condition monitoring device to be implemented on a railway vehicle system requires 

added features like safety and reliability. Hence, the choice of condition monitoring technique is very 

important and should be selected based on how it can handle sever nonlinear system, robustness, 

sensitive to disturbances and computation performance. This section presents various techniques used 

to estimate unmeasurable parameters for the purpose of condition monitoring of the railway vehicle.   

2.1.  Model-based techniques 

The model-based methodologies are preferred when there is no direct measurement of parameters but 

there is access to the relationship between the input and output signals [2]. The model-based 

diagnostic techniques have been used to identify faults in dynamic systems through the evaluation of 

residuals. One particular interesting technique among the model-based techniques is the observer-

based fault detection filter design (see Figure 1). The observer-based methods are effective in 
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detecting sensor, actuator, and system component failure but present difficulties when applied to 

systems which are subjected to unknown disturbances and model uncertainties [4]. A possible cause of 

these difficulties could be in the selection of the initial values and state vector when considering partial 

linearization. Even so, there is no guarantee that the estimated parameters will converge [5].   

 

 
Figure 1. Observer-based fault detection method [5]. 

 

The commonly studied method for estimation of dynamic systems that uses an observer for fault 

detection is the Kalman filter (KF) for linear systems and the extended Kalman filter (EKF) for 

nonlinear stochastic systems [6]. Nowadays, the Kalman filter is one of the most popular methods 

used for state and parameter estimation. It utilises measurements linearly related to the state and error 

covariance matrices to generate a gain referred to as Kalman Gain. This gain is applied to the prior 

state estimate, thus, creating a posterior estimate. The estimation process continues in a predictor-

corrector manner while maintaining a statistically minimal state error covariance matrix. The 

interaction between the wheel and the rail profiles influences the dynamic behaviour of a railway 

vehicle. This dynamic interaction is nonlinear and is due to the complication arising from the contact 

patch, geometry and creep. Typically these dynamics are usually analysed using the creep coefficients 

and the conicity. Charles et al [7] used the Kalman filter approach to estimate the nonlinear geometries 

as a nonlinear conicity function. Their estimator tracked the parameters well but there were some 

degree of uncertainties especially for lower conicity values.  Thus, the authors pointed out that 

incorporating multiple Kalman filter models was best suited for the investigation. Tsunashima and 

Mori [8] demonstrated the possibility of detecting railway vehicle suspension failure using the multi-

model approach. Their method incorporated a set of mathematical models in the initial step (model 

design to represent different failure modes) before designing model-based filters based on each model. 

They examined the validity of the approach by investigating the secondary lateral damper and spring 

failure in railway vehicles using Kalman filter as a mode-matching filter. Despite their simulation 

result showing that the mode probability in the interacting multiple model (IMM) is effective for fault 

detection, the number of model history increases exponentially with time which can bring 

implementation problems [5]. Other notable applications that use Kalman filter approach for 

parameter estimation includes creep force [9-10], creep coefficients [11] and suspensions [12]. 

Another method is the sequential Monte Carlo (also known as particle filter) which in principle 

takes the Bayesian approach to estimate the states and parameters, whereby one attempts to accurately 

represent the probability distribution function of the parameters of interest. Though it is relatively new, 

it has taken many forms over the years and this has made it popular particularly for solving estimation 

problems for nonlinear systems. Li et al [13] implemented the Rao-Blackwellised particle filter to 

estimate the secondary lateral and anti-yaw damping coefficients of the railway vehicle dynamic 
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model then compared the findings with that of EKF. The idea behind Rao-Blackwellisation is to 

reduce the computational requirement and increase the efficiency of the particle filter by reducing the 

size of the augmented state space through marginalizing out some of the variables. Their simulations 

indicated that there was some degree of uncertainty in the wheelset conicity estimates. This could have 

been because of the track roughness and the wheel profile, thus, they concluded that, an explicit non-

linear estimate would suffice     

System identification technique entails fitting parametric values to a set of measured states or 

regressors to minimise the square of the error of the estimated output to the real output. Due to 

unavailability of prior knowledge, ‘black box ‘model is used, but if there is some knowledge of the 

system then ‘grey box’ model is employed for parameter identification of the unknown state or 

regressor. Charles et al [14], proposed a least-square approach to estimate the conicity function shape. 

A piecewise cubic function approach was used to estimate the nonlinear function. The parameters for 

the cubic functions were estimated using the least squared approach from measured data collected 

from the system. Even though the method estimated the nonlinear wheel geometry function, one of the 

assumptions they made was that the track input noise was white, which is normally coloured. 

 Predicting models developed by Shafiullah et al [15] using regression algorithms were used to 

investigate the vertical acceleration behaviour of railway wagons that are attached to a moving 

locomotive using modern machine learning techniques. Different types of models were built using a 

uniform platform to evaluate their performance. The set of attributes that were used to evaluate the 

estimation algorithm are; correlation coefficient, root mean square error, mean absolute error, root 

relative squared error, relative absolute error and computational complexity. Both front and rear body 

vertical acceleration conditions were predicted using ten common regression algorithms. Although, the 

accuracy of the models varied based on several factors, the linear regressor algorithm performed better 

overall than any other algorithm. 

2.2.  Signal-based techniques 

In some instances, the output signal is the only signal available; therefore, the signal-based 

methodologies are relevant in such instances.  The measured signals are analysed in response to some 

form of disturbance. The extraction of fault-relevant signal characteristics can in many cases be 

restricted to the amplitudes or amplitude densities within a certain bandwidth of the signal. Parametric 

signal models can be used to estimate the parameters by analysing the changes in the frequencies and 

their amplitudes. The signal processing methods used are spectral analysis, wavelet analysis and band-

pass filters [5]. 

These methods are useful for extracting the frequency range related to faults. However, it is 

difficult to detect faults as the characteristics can vary with conditions and the acceleration state of the 

running vehicle. For instance, Oba et al [16] developed a condition monitoring algorithms for fault 

detection in Shinkansen bogies. The two algorithms proposed are based on statistical analysis of 

vibration acceleration during certain periods. One algorithm analysed the peak vibration distribution of 

operation with non-faulty parts and with faulty parts. The vibration states of the front and rear bogies 

were compare using the other algorithm for one faulty bogie. One of the assumptions made was that 

the faults in the rotating parts on the bogie are related to their rotational frequencies. The faults were 

successfully detected by applying an appropriate band-pass filter and evaluating the difference in the 

shape of the distribution for the vibration states.  

A diagnostic tool is presented by Belloti et al [17] which use wavelet transform to detect wheel-flat 

defect of a test train. The rail was instrumented with four accelerometers and an inductive axle-counter 

block for assessing the train speed and health status of the wheel. The technique was found to have a 

high efficient in detecting damaged wheels as well as measuring the train speed. The estimation 

method considered that the impact force from the wheel-flat and the wheel-flat length to be linear for 

which they are highly nonlinear.  

Zhang et al [18] set an online test to monitor the vibration characteristics of a train wheelset. They 

analysed the impacts of vibrations on the axle box bearings using characteristic spectral analysis. The 
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vibration sensors were mounted on the axle box bearings to extract the vibration signals then sent to a 

data acquisition circuit through the signal condition and demodulation circuit. Another signal detected 

by a photo-electric speed sensor was sent to a measurement and sampling unit for analysis. The 

measured signals were then transformed from time to angle domain discrete signals and then to 

characteristic domain signals. From this characteristic signal, the fault in the axle box bearing was 

identified. Their studies showed that, the diagnostic system performed as expected and as far much 

better than the conventional spectral analysis method. 

In the paper by Mehrpouya and Ahmadian[19], a superelement technique is proposed to identify 

the forces that are exerted on the wheelset. A finite element (FE) model of a railway freight vehicle 

was adopted for the analysis. The model developed comprised of two-axle bogies and a freight wagon. 

In their studies, the model update was performed in two stages. The first stage, the bogie model was 

update was updated using data measured from the actual bogies, and the second stage, the whole 

vehicle model was updated from data obtained from the actual vehicle system. Due to the increased 

computational cost of their technique, a superelement analysis method was found to be appropriate in 

order to reduce the model to an acceptable level for computational purposes. The resultant model was 

applied for force identification scheme conducted on the frequency domain. Their results indicated 

that the procedure gave acceptable estimates of the low frequency range forces. They concluded by 

indicating that the technique investigate is suitable for detecting forces during normal operation of the 

rail vehicle and also viable in predicting parts of the track where the forces exceed the permissible 

range.   

3.  Examples of practical applications of condition monitoring systems employing vehicle-based 

and track-based sensors  

Today, most of the commercially available products for condition monitoring of railway vehicles are 

predominantly focused on the bogie system; this is because some of its critical components change 

their parameters rapidly when in operation and can pose safety related issues. The key concept here is 

the ability of the existing technology to monitor and identify these parameters in real time for 

condition monitoring and predictive maintenance purposes. Different sensor configurations are 

currently being implemented in the industry for monitoring railway vehicle parameters; but they 

mainly fall as either on-board (vehicle-based) or track-based systems (see Figure 2a and 2b). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Condition monitoring technology within the railway industry has proliferated in recent years; this is 

due to the continuous improvement of electronic-based systems. This has created a unique situation   

Figure 2a. Bogie and wheelset sensor position [2]. Figure 2b. Trackside sensor configuration.   
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for implementing proactive condition monitoring technology in the railway industry. This approach 

will create the possibilities of identifying failing systems while the asset is in operation before they 

create catastrophic damage. Economically, most of these proactive products are wayside condition 

monitoring systems and very few sensors are few sensors are directly mounted on the vehicles. 

Another reason is that the cost of monitoring the condition of the bogie will be expensive than the 

faults they are handling. There are enormous amount of trains in operations and to equip them with 

several detectors is a challenge in regards to cost and maintaining the overall detector technology [20]. 

3.1.  Vehicle-based sensors 

Sensors mounted on a railway vehicle can be used to identify track irregularities, bogie dynamic 

performance and absolute train speed. The sensor networks on the bogies are instrumental in 

identifying track irregularities [2]: 

 Pitch rate gyro can be used to obtain the mean vertical alignment of the track at longer 

wavelength. 

 Axlebox accelerometers can be used to measure the vertical track irregularities at shorter 

wavelength. 

 Bogie roll rate gyro are used to approximate the track cross level for longer wavelength. 

The combination of the roll and yaw rate gyro together with the lateral sensing accelerometer can 

be used to estimate the absolute roll of the track. The use of these sensors allows the twist from the 

design transitions to be included in the absolute twist estimate [2]. The speed of the vehicle is very 

important while acquiring the data because it is necessary for performing conversion between time and 

displacement along the track.  

In spite of the fact that the bogie mounted sensors are adequate for monitoring track irregularities, 

they can also be used to identify deviation in the rail vehicle performance. Mei and Li [21] used the 

inertial sensors which were mounted on the bogie to monitor the vehicle dynamic response to track 

excitation. The advantage of this method is that, it eliminates the inaccuracy inherent with position 

encoders especially when the wheel is in slip/slide mode. The rail vehicle pitch and bounce 

accelerations were successfully estimated using two separate filters. This approach was used for filter 

design simplification by decoupling the interactions in the system. The drawback with this scheme is 

that at high speeds the time shift (delay) between two signals is small, thereby introducing large errors 

in the measurement.   

In another application Monje et al [22], developed an intelligent sensor that can measure the rolling 

contact fatigue at the wheel rail interaction. The technique comprised of an optical sensor (emitter and 

detector photodiodes) attached to the bogie (i.e. positioned facing the wheels) and a radio transmitter 

for sending radio frequency to a configuration circuit. In the analysis, the detectors were able to detect 

the sliding effect at the wheel rail contact point. The test deduced that the wheels do not roll evenly at 

all time. The major bottlenecks of using the optical sensors for such applications is that it can only be 

used for short term application and that things like dirt and dust clogging on the detector may induce 

measurement disparities.    

Matsumoto et al [23] adopted a different approach to estimate the forces at the wheel-rail interface. 

The proposed method relied on non-contact gap sensors to detect wheel distortion rather than strain 

gauges or load cells. Unlike conventional sensors which are usually attached to the wheel rim, the gap 

sensors are mounted on the non-rolling part of the bogie (sensor base is attached on the bearing box) 

but close to wheel rim. Since the movement of the wheelset cannot be neglected, two gap sensors were 

employed to compensate for the movement. Although, the measuring unit could be improved by 

inclusion of more gap sensors to compensate for contact point difference and the structure of the wheel 

surface, their results showed that the method can be used to extract satisfactory data. 

Bleakley and Senini [24] presented an online tool for analysing the acceleration signals acquired 

from accelerometers mounted on the body frame of a wagon. The dual-axis sensors were configured to 

measure the lateral and vertical accelerations. The signals were converted from time to frequency 

domain using fast Fourier transform (FFT) in order to establish their spectral composition. Though, the 
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detection method developed provided a set of coefficients according to the frequencies interest, the 

results they obtained were similar to the short term RMS value via its frequency domain. From their 

results, there was some significant improvement on the signal to noise ratio (from 5/4 to 4/2) thereby 

making it suitable for online detection. Even though their approach performed as expected, they 

pointed out that a further improvement on the weighting and summation vector could enhance the 

detection capabilities significantly.      

3.2.  Track-based sensors   

Incorporating sensors on the track for condition monitoring purposes is to ensure the smooth running 

of rail vehicle and no sudden disruption on the railway line. However, these systems are not that 

reliable and in most cases the inspection of railway vehicles takes place in the depot before it leaves 

for operation. Such inspections are time-consuming and prone to human error. These techniques have 

been around for many years, but an increase in damaged wheelset due to higher speeds, heavier loads 

and modified operating conditions has led the rail stakeholders to re-evaluate these inspections 

strategies.  

Brickle et al [25] produced a report on the current and emerging state-of-art automated systems that 

employ track-based sensors for wheelset condition monitoring (WCM). The research commissioned 

by the Rail Safety and Standard Board (RSSB) UK identified the following functional categories of 

automated WCM inspection systems: 

 Wheel profile monitoring systems – these systems extracts data from the actual wheel profile 

which will be used to compare with measurement from a new wheel profile so as to make 

key analysis. Most of the available wheel profile measuring systems employs non-contact 

technique to monitor the wear on the wheel as the train passes. A laser line or high-

intensity strobe light illuminates the wheels and the images are captured using high-speed 

digital cameras. The extraction of the wheel parameters is done using specialized computer 

software. The problem with such systems is the ability to identify cracks in the plate, rim, 

and flange and tread region. Some of the current systems that are commercially available 

for wheel profile measurement include DeltaRail’s Treadview, ImageMap’s WheelSpec, 

Beena Vision’s WheelView and LynxRail’s ATEx. The treadView developed by DeltaRail 

(UK) comprises of a series of lasers and cameras installed on the track. As the train passes 

by at low-speed (less than 10mph) the images of the wheel are captured then sent to a 

computer for image analysis. The wheel parameters (flange height and width, tread hollow 

and rim thickness, for example) are calculated and then stored so as to build each wheel 

wear history [26].   

 Wheel impact load detectors (WILD) – This type of measuring system detect the presence of 

a defective wheel by measuring the magnitude of the load (amount of force the wheel 

exerts to the rail) and comparing it to the specified threshold. WILD depend on optical 

sensor, accelerometers, load cells or strain gauges to measure and detect wheel defects. 

Out-of-round, shelling or flat spots characteristics on the wheels induce excessive impact 

on the rail and can contribute to wear and tear of track and vehicle. The rail deflection 

caused by the vertical forces exerted by the wheels is measured and analysed to determine 

the wheel tread irregularities. The available systems in market are GE Transportation’s 

MATTILD, DeltaRail’s Wheelchex, Teknis’ WCM and Salient System’s WILD. Also 

Gotcha-QuoVadis by Baas R&D is another WILD product that uses optical sensors to 

measure wheel defects. The force applied by the wheels as the rail vehicle passes is 

measured through the deflection of the rails. The data collected from the sensors is 

analysed using Gotcha software to identify the overall quality of the wheel.     

 Bogie performance detectors – These are wayside systems implemented to identify the level 

of performance for railway vehicles. Different systems employ different measurement 

strategies, for instance, the hunting truck detector (HTD) by Salient systems measures the 

lateral force exerted on the rail in order to identify vehicles that shows excessive hunting 
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motion through the evaluation of the hunting index (railway safety technology). Some 

other systems like the TBOGI by wayside inspection devices (WID) uses laser technology 

to assess the bogie wheelset angle of attack and its respective position on the track. The 

data collected from the TBOGI system is analysed to detect faults in bogie like 

misalignment, skewed or warped. Even though such systems are effective in their 

applications but they fall short in monitoring defective springs. Other available systems 

include GE Transportation system’s MATTILD, LynxRail’s ATEx and Salient systems’ 

truck performance detector (TPD) [26].  

 Tread condition detectors – Most systems in this category applies the non-destructive 

ultrasonic sensor technology, to detect the presence of any discontinuity caused by surface 

breakings/cracks on the tread surface of the wheel. The ultrasonic waves transmitted by the 

detector transducers propagates through the wheel, and in case there is a crack, then the 

signal will be attenuated which will be sensed by the transducers. Lasers have been 

successfully implemented in ultrasonic wave generations which are detected by non-

contact ultrasonic transducers. For example the Module 2000 DSR by Talgo utilizes the 

nondestructive ultrasonic detection technique to measure the wheel tread surface. The 

system (DSR) is adequate in determining surface breaking or cracks on the wheel as the 

train moves at speed of 6mph or less. Another detector that uses ultrasonic detection is the 

Argus by Hegenscheidt MFD.        

 Hot axle bearing – They are used to detect anomalous hot wheel bearings. Thermal sensors 

extract heat signature from the bearings to establish any indication of failure. The hot axle 

bearing detection technology has developed over the years since it started in the early 

1960s. The systems then depend on thermal sensitive resistors to detect infrared radiation. 

On the contrary, current systems utilize infrared image processing techniques to obtain 

more accurate measurement while the train is operating at speeds of about 310mph 

maximum. The Pegasus by ITSS is a good example of a hot bearing detector that uses 

multi-element sensors configuration to provide thermal data of bearings, wheel discs and 

brakes. The pegasus can measure bearing temperatures between 0 to 150C when the train is 

travelling at 310mph. Additional systems that are available include, Harbin VEIC’s HTK 

499 hot bearing detector system, GE Transportation system’s micro hot bearing detector 

and Schenck’s MULTIRAIL hot box detector system. 

 Hot and cold wheel detectors – The technology used for hot and cold wheel detection is 

quite similar to that of hot bearing detectors because both techniques rely on infrared 

images for wheel temperature analysis as the train is moving at high speed.  When the rail 

vehicle’s brakes are stuck or fully released during normal operation this is an indication of 

hot wheel temperature whereas for cold wheel temperature, the brakes have malfunction 

(failed to apply). The systems that are current used in the railway industry are mostly 

provided as an add-on module to the hot bearing detector, however, the GE Transportation 

systems’ micro hot wheel detector can be supplied as an add-on or standalone module for 

brake inspection.  

 Acoustic bearing defect detectors – Microphone array detector are used to record the 

characteristic of sound made by bearings as the train passes. Noise and excessive vibration 

of the bearings will be produced as they start to fail. This type of detectors are more mature 

than the hot axle bearing by reason of, that they are highly sensitive and can predict failing 

bearings in advance. According to [], the recent acoustic detectors should be able to detect 

at least 35 % of hot bearing failures. Examples of acoustic bearing defect detectors are 

TTCI’s Trackside Acoustic Detection System (TADS®) and VIPAC’s RailBAM®.  

 Automatic vehicle identification (AVI) systems – The substantial use of AVI system is 

significant as it helps in transmission of data from rail vehicles with defective components 

to the maintenance crew at the depot for corrective action. For instance, rail vehicles are 

equipped with radio frequency identification (RFID) tags which are preprogrammed for 
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specific vehicles. As the train passes an area with vehicle identification reader, radio 

frequency energy is sent to a certain area of the track to analyse the tread and wear patterns 

of moving trains. When the train has passed, the data is sent back via GPRS to centralized 

database for optimization and analysis. TransCore and TagMaster are some of the leading 

manufacturers of RFID tags and readers used in the railway industry for AVI systems.     

 Brake pad inspection systems – This type of inspection system captures digital images of 

brake pads and then use the current machine vision technology to ascertain  the wear rates, 

uneven wear and also detect missing brake pad. PadView by DeltaRail uses cameras and 

strobe light mounted beneath the track to assess the condition of the brake pad. Other 

systems that use machine vision technology include; Brake block measurement system by 

MRX Technologies and FactIS by Lynxrail and TTCI.  

The identified technologies by Brickle et al [25] identified several emerging technologies that 

utilise track-based sensors for effective railway vehicle condition monitoring.   

 Train fault detection system (TFDS) – TFDS is a system that integrates high speed digital 

image acquisition, real-time image data processing and pattern recognition technology to 

assess various safety critical components of railway vehicles.  The machine vision 

technology is used to capture images of the bogie system to detect key parts that are 

essential for safe operation. The components that are inspected include springs, brake shoe 

and pin, bearings adapter and end cap, brake beam, and coupling components. High speed 

video cameras collects the images of a moving train, analyse and process them using 

computer-aided technology to detect deficiency, fractures, and other faults on the train. The 

apparent application of TFDS has transformed from manual detection and maintenance to 

computer-based detection and manual maintenance.     

 Laser-based ultrasonic cracked axle detection – This state-of-art technology for crack axle 

detection utilises a laser in conjunction with standard ultrasonic transducer to detect flaws 

on the axle. The ultrasonic waves generated by the high-energy pulsed laser introduces 

high frequency sound waves to the axle, the feature of the received signal by air-coupled 

transducer is sent to a signal processing unit for analysis to determine cracks across the 

axle circumference. In order to achieve a comprehensive measurement data, multiple 

inspections are done on the axle.  

 Automated ultrasonic-based cracked wheel detection - This is a trackside oriented system for 

monitoring railway wheels using ultrasonic sensor approach. The wayside cracked wheel 

detection system by Dapco utilises the ultrasonic technology to detect cracked wheels as 

the train travels at speeds of up to 5mph. The data collected from the four test stations is 

analysed using pattern recognition technique so as to provide real-time evaluation of the 

flaw size, type, and location. The system is designed to identify cracked/shattered wheels 

which are above 0.5 inches. In consequence of the fact that the detector needs to access the 

wheel tread for maximum data extraction, a flange bearing rails is supplied on the track and 

a couplant (to facilitate ultrasonic wave transmission) that is pumped through the coupling 

of the ultrasonic sensor and wheel. This type of system is robust and can be applied to 

different environmental conditions.   

 Displacement sensor-based bogie hunting detection – Excessive hunting experienced by a 

train during high-speed operation can cause derailment, thus, a wayside system proposed 

by LynxRail that utilises an array of inductive displacement sensors is used to detect the 

hunting phenomenon. The displacement sensors used are capable of providing quality 

information about various wheelset parameters relative to the track. The LynxRail system 

is capable of detecting hunting for railway vehicle traveling at lower speeds.    
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 Wei et al [27] presented a real-time wheel defect monitoring system that used Fibre Bragg Grating 

(FBG) sensors. The sensors were mounted on the track to measure the wheel-rail interaction in relation 

to the strain imposed on the track by this interface. The strain signal of the wheels collected from the 

sensors was analysed using a condition index (CI) system. The problem of using the CI is that, if one 

of the wheels was in bad condition, the system will not be able make a distinction of which wheel is 

faulty. One way round it, is by using low-pass filter to filter out the low-frequency of the strain signal. 

Nevertheless, the condition monitoring system using FBG sensors was able to identify wheel defects 

in real time and that the FBG sensors were immune to the electromagnetic interference. Nenov et al 

[28] proposed an improvement of a measuring system to detect unusual wheel loading for railway 

vehicles in motion. The measurement device incorporates two specialised force sensors which were 

attached to both sides of the track. Figure 3 shows the set-up of the force sensor on one side of the 

track. The sensors comprised of two strain gauges which measures the tangential forces at the wheel-

rail contact. Due to the power lines interference with the measured data, a notch filter was used to 

cancel out the 50Hz harmonics.     

 

 
Figure 3. Wheel loading measuring device [28]. 

 

The data collected as the railway vehicle passes through the sensors was analysed and the errors in 

loads due to the non-perfect track were determined. The improvements made to the wheel load 

measuring system are: 

 Adopting an appropriate notch filter to cancel the power-line interference on the signal. 

 Errors in the load due to the non-perfect track section measured.  

4.  Conclusions 

The modern intelligent railway relies on sophisticated monitoring systems to allow informed decision 

making on asset management actions especially in maintenance and renewals activities. An overview 

of the existing techniques used for condition monitoring of railway vehicle dynamics have been 

presented. Some of the existing condition monitoring techniques presented performs the fault 

detection in railway based problems (critical wheel/rail contact area, for example) by using advanced 

filtering, system identification and signal analysis methods. Other techniques are focussing on the fault 

detection and condition monitoring of vehicle suspensions by analyzing the dynamic interactions 

between different vehicle modes caused by component failures in the system and leading to simple but 

effective solutions. These approaches do not require complex mathematical models of the system and 

can overcome potential difficulties associated with nonlinearities and parameter variations in the 

system. This paper will study the feasibility of implementing these theoretical approaches in practical 

condition monitoring systems.   

The practical monitoring of wheel defects for trains could be done through track mounted sensors and 

the measured data processed by an advanced calculation programme before being combined with the 

identification tag of a locomotive or a coach. This technique is employed by existing condition 
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monitoring systems and determines precisely which part of the train is faulty/damaged, and to what 

extent. Some of these wayside monitoring devices have encouraged the adoption of condition-based 

maintenance thereby saving the industry valuable time and costs. Sensors can also be mounted on the 

rolling stock in order to monitor the condition of the railway vehicle infrastructure. So modern rolling 

stock is fitted with high-capacity communication buses and multiple sensors and will result in the 

potential for advanced processing of collected data. This approach requires intelligent image 

acquisition and analysis systems capable of processing large amounts of data and various ongoing 

research projects are tackling this task. This paper was an attempt to collate and critically appraise the 

techniques used for condition monitoring of railway vehicle dynamics.  

The challenge is to find the right measurement technologies, since reliable and valid measurements 

are a necessity for an effective condition monitoring approach. There is the question of finding 

relevant and correct parameters that can be measured to provide the most relevant measuring data, 

because the measured data must then be transformed into relevant and understandable information that 

can then be used as decision support in the maintenance management process. Conclusively, these are 

some of the corner stones that are needed to be able to arrive at a condition-based maintenance 

strategy.  
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