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Transient analysis with fast Wilson-Daubechies

time-frequency transform

V Necula, S Klimenko and G Mitselmakher

University of Florida, P.O.Box 118440, Gainesville, Florida, 32611, USA

Abstract. The time-frequency transforms are important tools for identification of transient
events in the output of the gravitational-wave detectors. Produced by the terrestrial and
possibly by astrophysical sources, the transient events can be identified as patterns on the
time-frequency plane with the excess power above stationary detector noise. In this paper
we consider a particular case of the Wilson-Daubechies time-frequency transform for use in
the gravitational-wave burst analysis. The presented Wilson-Daubechies basis shares some
properties with the Gabor frames, but circumvents the Balian-Low theorem. It also shares
similarity with the Meyer wavelet, which is actively used in the gravitational-wave burst analysis.
The main advantages of the Wilson-Daubechies transform are the low computational cost,
spectral leakage control, flexible structure of the frequency sub-bands, and the existence of
the analytic time-delay filters, which are important for localization of the gravitational-wave
sources in the sky. These properties of the Wilson-Daubechies transform may prove useful not
only in the transient analysis, but also in other areas of the gravitational wave data analysis
and detector characterization.

1. Introduction
Time-frequency (TF) analysis is a part of searches for gravitational wave burst signals expected
to accompany collapses of massive stars, mergers of compact binary objects (consisting of
neutron stars and black holes), gamma ray bursts and other energetic phenomena. Such searches
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] have been already conducted using the data collected with the
first generation ground based laser interferometer detectors (LIGO [12], VIRGO [13], GEO [14]),
but no detection has been reported. The second generation detectors will start operation after
2015 with the order of magnitude better sensitivities, and the hunt for burst signals will be
resumed with increased chances of success. To maximize the discovery potential of the second
generation detectors, the development of new more advanced data analysis techniques is also
required [15]. This paper presents a time-frequency transform first considered by Wilson [16]
and detailed by Daubechies et al. [17] which can significantly improve the performance of the
burst search algorithms.

Optimal matched filter techniques are not always suitable for the burst searches because
for some transient GW signals accurate waveforms are not available or difficult to obtain.
Also, transient events due to environmental and instrumental disturbances need to be identified
in the detector data streams for a better understanding of the non-stationary noise (detector
characterization). Therefore, the existing burst algorithms exploit the localization of transient
events in the TF domain. With an appropriate TF basis, it is anticipated that transient events
(both GW bursts and environmental disturbances) can be identified as patterns (clusters) on

Amaldi 9 and NRDA 2011 IOP Publishing
Journal of Physics: Conference Series 363 (2012) 012032 doi:10.1088/1742-6596/363/1/012032

Published under licence by IOP Publishing Ltd 1



the TF plane. The size, shape and the statistical properties of the clusters greatly depend on
the TF transform used in the analysis.

One common approach to the burst TF analysis is to use Gabor bases (windowed Fourier)
and their variations [18, 19, 20, 21, 22], where template waveforms densely cover a TF plane to
produce an overcomplete representation of the data. Such TF transforms are convenient for the
visualization of burst events, however their template waveforms do not form an orthogonal basis.
This significantly complicates the reconstruction of burst signals, which are usually represented
by multiple template waveforms. In this case, the inverse transform usually is not defined and
the time domain GW signal can not be reconstructed from the TF data.

Another approach to the TF analysis is to project the data on a local orthonormal basis
of wavelet functions [23]. In this case, the data in the TF domain is critically sampled (the
same number of data samples before and after the transformation), the energy is conserved,
the inverse transform is well defined, and the statistical independence of the TF data samples
ensures a straightforward application of the clustering algorithms [24] and the coherent network
reconstruction methods [25]. For example, one of the baseline LIGO-Virgo burst algorithms [26]
uses Meyer’s wavelet which has replaced older implementations of the TF transform based on
the Symlet or Daubechies wavelets [24].

The TF transform presented in this paper combines advantages of the conventional Wilson-
Daubechies transform and the Meyer wavelet. It has a better performance in several areas
including: a) fast transformation by using the Fast Fourier Transform (FFT), b) shorter
transformation filters (time localization), and c) better control over the spectral leakage
(frequency localization). Also it offers a simple analytic expression for the time delay filters
used to time-shift TF series. These filters are necessary for the sky-localization algorithms [26],
which should synchronize the TF data streams from different detectors for an anticipated sky
location of the GW source.

2. Wilson-Daubechies orthonormal basis
Conventional approaches to the time-frequency analysis include the windowed Fourier transform

x̃(ω, t) =

∫
e−iωτφ(τ − t)x(τ)dτ , (1)

with φ as the window function, and its discrete version in frequency ω and time t based on
Gabor frames

gnm(t) = eimω t
T φ(t− nT ) , n,m ∈ N , (2)

where the free parameter T defines the time resolution. In principle, with a careful choice of
the window function an orthonormal basis can be constructed. However, it is a subject to the
Balian-Low theorem stating that the basis functions are non-local in either time or frequency:∫

t2|φ(t)|2dt =∞ or

∫
ω2|φ̃(ω)|2dω =∞ (3)

Wilson [16] circumvented the limitations of the Balian-Low theorem by introducing a general
alternative to Gabor frames where each frequency band has its own window function. Daubechies
and collaborators [17] showed that one can build a simple orthonormal Wilson basis by using
just one window function φ(t) and construct the basis as:

gn0(t) = φ(t− nT ) (4)

gnm(t) =
√

2 (−1)mncos(2πmt/T )φ(t− nT/2) , m+ n = 2k , m > 0 (5)

gnm(t) =
√

2 sin(2πmt/T )φ(t− nT/2) , m+ n = 2k + 1 , m > 0 (6)
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Also the window function should satisfy the condition∑
l∈Z

φ̃(ω + 2πl)φ̃(ω + 2πl + 4πm) = (2π)−1δm0 . (7)

There are constructions of φ which guarantee exponential decay in both time and frequency [17].
But in this paper we will focus on a special case where φ is a generalization of the Meyer
wavelet scaling function, which is compactly supported in the frequency domain and decays
faster than any inverse polynomial in the time domain. This choice is particularly convenient in
applications to band-limited (sampled) signals because a fast discrete version of the transform
can be obtained.

3. Fast Wilson-Daubechies-Meyer transform
In this section we consider a discrete data x[k] sampled at the frequency rs with the maximum
angular frequency Ω = πrs, and find the discrete Wilson-Daubechiers-Meyer (WDM) filters
fnm[k] used to obtain the time-frequency representation of the signal:

wnm =
∑
k

fnm[k]x[k] (8)

The WDM basis functions in the Fourier domain are given by

g̃n0(ω) = e−inωT φ̃(ω) (9)

g̃nm(ω) =
1√
2

e−inωT/2ψ̃nm(ω). (10)

The exponential factors describe the time translation of the basis and the functions ψ̃nm(ω) are
constructed from the frequency-shifted φ̃(ω) functions

ψ̃nm(ω) = C∗m+nφ̃(ω +m∆Ω) + Cm+nφ̃(ω −m∆Ω) , m > 0 (11)

∆Ω = 2π/T , C2k = 1 , C2k+1 = i . (12)

The generalized Meyer scaling function φ̃(ω) is defined as

φ̃(ω) =
1√
∆Ω

, |ω| < A (13)

φ̃(ω) =
1√
∆Ω

cos

[
νn

(
|ω| −A
B

)
π

2

]
, A ≤ |ω| < A+B , (14)

where A and B are two positive parameters

2A+B = ∆Ω , (15)

and νn : [0, 1]→ R is a monotonically increasing function constructed from the incomplete Beta
function B(x; a, b)

νn(x) =
B(x;n, n)

B(1;n, n)
, B(x; a, b) =

∫ x

0
ta−1(1− t)b−1dt . (16)

The parameter n defines how sharp are the edges of the scaling function. For example, Figure 1
shows the two scaling functions with n = 2 and n = 4 (top plots) and their time domain
counterpart (bottom plots).
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Figure 1. The top plots show φ(ω) and highlight the defining parameters: the width of the top
flat region (black) is 2A, the transition regions (blue) are defined by B, and the red line spans
the nominal band width 2A+B. The shape of the transition region depends on the parameter n
in νn; n = 4 for the left plot and n = 2 for the right plot. The bottom plots show the coefficients
of their discrete time domain representation. In these examples M = 4 (see Equation (17)).

Only those functions g̃nm which span the data frequency band [−Ω,Ω] are relevant for the
transformation. Therefore m ≤M , where the parameter M is given by

M =
Ω

∆Ω
=

T

2τ
(17)

and τ = 1/rs. Unless M is a natural number, the filters fnm[k] for n 6= 0 are not discrete
translations of f0m[k], therefore M ∈ N. In this case we can also redefine the functions g̃nM to
be

g̃nM (ω) = e−i(2n+q)Mωτ
[
φ̃(ω + Ω) + φ̃(ω − Ω)

]
, |ω| ≤ Ω (18)

where q = 0, if M is even, and q = 1 otherwise. The new set g̃nm (0 ≤ m ≤ M) forms an
orthonormal basis on [−Ω,Ω] and the explicit WDM expansion is

wn0 = τ
∑
k∈Z

x[2nM + k]φ[k] (19)

wnm = τ
√

2< Cm+n

∑
k∈Z

eiπkm/Mx[nM + k]φ[k] , 0 < m < M (20)

wnM = τ
∑
k∈Z

(−1)kx[2nM + qM + k]φ[k] (21)

where φ[k] are the sampled values of φ(t) - the time domain representation of φ̃(ω). Note, the
Fourier inverse of φ̃(ω) does not have a compact support in the time domain, therefore, the filter
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φ[k] should be truncated. As the result the transformation is approximately orthonormal, but
for any practical application the error introduced by the truncation can be made insignificant.

The formula for 0 < m < M case also cover both m = 0 and m = M cases up to the
normalization factor

√
2 and picking only the odd or even coefficients as appropriate. Therefore,

using the periodicity of the exponential factor we can rewrite

j<2M∑
j=0

ei2πjm/2MXn[j] =
∑
k∈Z

eiπkm/Mx[nM + k]φk (22)

Xn[j] =
∑
k∈Z

x[nM + 2kM + j] φ[2kM + j] (23)

The data vectors Xn have the length of 2M , and the summation on the left side of Equation
(22) is the discrete Fourier transform of Xn. Therefore, the FFT algorithm can be used to speed
up the calculations. The construction of the inverse transform is straightforward and also uses
the FFT algorithm.

Only half of the Fourier components obtained from the vectors Xn represents the WDM
expansion in Equations (19-21). The other half is the WDM expansion

ŵn0 = τ
∑
k∈Z

x[(2n+ 1)M + k]φ[k] , (24)

ŵnm = τ
√

2= Cm+n

∑
k∈Z

eiπkm/Mx[nM + k]φ[k] , 0 < m < M , (25)

ŵnM = τ
∑
k∈Z

(−1)kx[2nM + (1− q)M + k]φ[k] , (26)

in the complementary orthonormal basis constructed from the time-shifted (by T/2) WDM
basis functions in Equations (9) and (10). Each WDM set (wnm or ŵnm) gives a complete TF
representation of the data. For 0 < m < M the coefficients ŵnm represent the quadrature of
the data wnm in the WDM domain. The quadrature is often used in the transient analysis and
obtained with the fast WDM transform at no additional computational cost.

4. WDM time-delay filters
In the coherent analysis of data from multiple detectors, the relative time delays between
detectors need to be introduced in order to synchronize the expected signal with respect to
a particular source location in the sky. Time-delay filters perform this operation in the time-
frequency domain and in this section we present these filters for the Wilson-Daubechies-Meyer
transform.

A time shifted data wnm(δt) in the TF domain can be calculated as

wnm(δt) =
∑
lk

wlk

∫ ∞
−∞

gnm(t+ δt)glk(t)dt . (27)

where wlk is the original TF data. time-delay filter can be evaluated in the Fourier domain∫ ∞
−∞

gnm(t+ δt)glk(t)dt =

∫ Ω

−Ω
e−iωδtg̃∗nm(ω)g̃lk(ω)dω (28)

Unless |m−k| ≤ 1, the integral vanishes because there is no overlap between the basis functions.
The results take a simpler form, if the time shift δt is a multiple of the sampling interval τ .
Evaluating the integral one finds

Amaldi 9 and NRDA 2011 IOP Publishing
Journal of Physics: Conference Series 363 (2012) 012032 doi:10.1088/1742-6596/363/1/012032

5



∫
gnm(t+ δt)gn+l,m(t)dt = (−1)ln< C∗l eim∆Ωδt Tl , (29)

Tl =

∫ Ω

−Ω
eiω(Mlτ+δt)|φ̃(ω)|2 dω , (30)

∫
gnm(t+ δt)gn+l,m±1(t)dt = (−1)m+n(−1)ln< C∗l+1ei(m±1/2)∆Ωδt(±i)lT ′l , (31)

T ′l =

∫ Ω

−Ω
eiω(Mlτ+δt)φ̃∗(ω −∆Ω/2)φ̃(ω + ∆Ω/2) dω . (32)

Equation (31) has to be multiplied by
√

2 whenever the sub-band index (m or m±1) is equal
to 0 or M . For the WDM transform the calculation of the time-delay filters is essentially reduced
to computing the integrals Tl and T±l . For comparison, for Meyer wavelet [26] the time-delay
filters should be evaluated and stored for each frequency band.

5. Properties of the WDM transform
5.1. WDM as a band-pass filter
Similar to wavelets the WDM transform is representing a set of band-pass filters. Figure 2 (top
plot) shows an example of the sub-band structure of the basis functions for M = 16. For the
WDM transform presented in the paper, the first and the last WDM sub-bands cover half of
the frequency resolution, however a transform with the uniform frequency resolution can be
also constructed. For comparison, Fig. 2 (bottom plot) also shows the sub-band structure for
the binary wavelet transform [24] which is less regular, each sub-band (frequency layer) having
a different shape due to the iterative nature of the wavelet decomposition. Although, both
transforms can be used for the TF representation of data, the WDM transform offers a more
accurate separation of the data spectral components.

5.2. Time-frequency maps
Each data sample wnm can be presented as a time-frequency pixel with dimensions ∆Ω× T/2.
Respectively, the wnm can be presented as a pixel map showing the TF content of the data.
Figure 3 shows the energy (w2

nm) time-frequency maps for a GW signal from a merger of non-
spinning binary black holes with M1 = M2 = 10M� and at distance of 10 Mpc. The WDM
map (top left) shows the average energy of the signal and its quadrature, which produces a
more clear signature of the signal and highlights the utility of the quadrature coefficients. The
other three TF maps are obtained with different wavelet transforms. Except for the Daubechies
wavelet (bottom left), which has poor TF localization due to its non-symmetric filter, the other
wavelet representations are fairly similar to the WDM map. However, the wavelets are limited
to M = 2i by their iterative decomposition procedure and cumbersome to use for large M .

5.3. Spectral density estimation
The WDM transform is an excellent tool for the power spectral density (PSD) estimation.
Figure 4 shows the noise spectral density amplitude obtained with the PSD estimators based
on the WDM (M = 8192, K = 2M , P = 12, n = 7) and windowed FFT (Hann) for one hour of
data collected by the LIGO Livingston detector. In both cases the frequency resolution is 1 Hz.
There is a very good agreement between the WDM and FFT in the quasi-white noise regions
(around 130 Hz and 170 Hz), but the WDM transform offers a lower spectral leakage in regions
dominated by the 60 Hz power line (and its harmonics) and the violin modes between 330 Hz
- 350 Hz. Within the filter truncation errors, the PSD obtained with the WDM transform is
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Figure 2. Spectral Fourier amplitudes of the basis functions for WDM transform (top) and
binary Meyer wavelet (bottom).

an accurate representation of the data, while the windowed FFT is always altering the data by
using a window in order to diminish spectral leakage.

5.4. Computational accuracy
The WDM transform is uniquely characterized by the parameters M , K

2A+B =
Ω

M
, B =

Ω

K
, K ≥M (33)

and n from νn(x) defining the smooth edge of the window function. Since the time domain WDM
basis functions are not compactly supported, in practice, they have to be truncated. Namely,
the filter φ[k] is defined for −L ≤ k ≤ L, where 2L + 1 is the filter length. The truncation
introduces an error in the normalization of the basis functions, which can be characterized by
the precision parameter

P = −log10

(
1−

L∑
k=−L

φ2[k]

)
. (34)

For a given n, ratio K/M and the precision parameter P , the filter length is proportional to M .
Figure 5 shows the ratio (2L+ 1)/M as a function of K/M and different values of the n and P
parameters.
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Figure 3. WDM transform (top left), Meyer (top right), Daubechies (bottom left) and Symlet
(bottom right) wavelet time-frequency energy maps for a binary black hole inspiral signal.

Figure 4. Spectral density amplitudes for LIGO Livingston data (GPS range 816260809 -
816264750) obtained with the WDM transform (red) and Hann windowed FFT (black).

When the n value increases, initially the filter length decreases. But for higher n the filter length
starts to increase again, because in the limit n → ∞ the φ(t) converges to the sinc function
with a slowly time decay.

Another way to estimate the accuracy of the transform is to perform the forward and inverse
transformations and subtract the resulting time series from the original one. Figure 6 shows the
distribution of the residual data for n = 4, M = 64 and K/M = 2 when the input data is a
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Figure 5. The ratio (2L+ 1)/M as a function of K/M for different values of the Beta function
parameter n and two precision requirements: P = 8 (left) and P = 12 (right)

Figure 6. Truncation errors for the inverse/forward transformation (n = 4, M = 64, K/M = 2)
of white Gaussian noise with the unity variance: P = 8 (left) and P = 12 (right).

white Gaussian noise with the unity variance.

5.5. Accuracy of the time delay filters
Truncation of φ[k] also affects the time-delay filters. By using the integrals Tl and T ′l (Eq. 30,32),
they need to be constructed for every WDM frequency band m and the time-delay parameter
δt. For a given m and δt, the achieved precision (calculated similar to Eq. 34 with the sum taken
over the time-delay filter coefficients) of the time-delay transformation depends on the number
of the filter coefficients (filter length LTD). Figure 7 (left plot) shows the precision as a function
of the sub-band index m and the delay index δt/τ for LTD = 123. By selecting the central point
(m = δt/τ = 32) as a conservative representation of the precision of all filters, the filter length
can be estimated as a function of K/M , n and P (see Fig. 8).

Acceptable accuracy of the time-delay transformation can be achieved for LTD > 60. Figure 7
(right plot) shows the difference between the time-delay transformation (LTD = 123 and
δt/τ = 32) implemented in the WDM domain and the correct values obtained with the WDM
transform (M = 64, K = 2M , n = 3) of the delayed data in the time domain, which is a white
Gaussian noise with the unity variance.
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Figure 7. The left plot shows time delay filters precision with truncation at LTD=123 for
M=64, K=2M, n=3. The right plot shows the time-delay filter truncation errors for Gaussian
noise with unity variance.

Figure 8. Time-delay filter length (LTD) as a function of K/M and n for two different precision
requirements, P = 8 (left) and P = 12 (right)

5.6. Complexity
Let N be the number of samples in the time series, and M , K, P the parameters defining the
transformation. The number of multiplications needed to obtain the TF data is

CWDM = 2N

[
log2 2M +

L(K,M,P )

M

]
(35)

where 2L(K,M,P ) + 1 is the length of the WDM filter. The first term in square parenthesis
represents the complexity of the FFT and the second term is the added complexity due to the
multiplication by the WDM filter (per 1/2 data sample). For comparison, the windowed FFT
performed with the 50% overlap between the adjacent windows has a complexity

CFFT = 2N [log2M + 1] . (36)

The FFT is always faster, but for largeM the computational performance of the WDM transform
becomes comparable. The complexity of the binary wavelet transform is

CW = N LW log2M , (37)

where LW is the wavelet filter length. It is comparable with the FFT only for Haar wavelet
(LW = 2). For longer wavelet filters (LW ∼ 1000), required to reduce spectral leakage, the
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computational cost of the wavelet transform is significantly higher than for the FFT and the
WDM.

6. Conclusion
The fast discrete Wilson-Daubechies-Meyer (WDM) transform is a promising tool for the
gravitational-wave burst analysis. With the WDM transform the transient events can be
efficiently localized on the TF plane. The transform is orthonormal and critically sampled,
which significantly simplifies the statistical analysis in the TF domain. The conservation of
energy is approximate, however, for any practical application the transformation errors can be
made insignificant. Depending on the particular requirements of the analysis, the transform’s
parameters (M , K, n and P ) can be customized to optimize the performance. Analytic time
delay filters are readily available to perform time-shifts of data directly in the TF domain.
The inverse transform is also available. These properties of the WDM transform make it a
convenient tool for the coherent network analysis and the reconstruction of the GW waveforms
and source coordinates. Due to a superior spectral leakage control, the WDM transform provides
an accurate spectral density estimation which can be particularly useful for monitoring of a quasi-
stationary noise typical for real detectors. With its unique properties, the WDM transform may
prove useful not only for burst searches, but also in the other areas of the gravitational wave
data analysis and detector characterization.

7. Acknowledgements
This work was supported by the US National Science Foundation grants PHY-0855044 and
PHY-0855313 to the University of Florida, Gainesville, Florida.

References
[1] Abbott B et al 2004 Phys. Rev. D 69 102001
[2] Abbott B et al 2005 Phys. Rev. D 72 062001
[3] Abbott B et al 2005 Phys. Rev. D 72 122004
[4] Abbott B et al 2006 Class. Quantum Grav. 23 S29
[5] Abbott B et al 2007 Class. Quantum Grav. 24 5343
[6] Abbot B P et al 2009 Phys. Rev. D 80 102001
[7] Abbot B P et al 2010 Astrophys. J. 715 1438
[8] Abadie J et al 2010 Phys. Rev. D 81 102001
[9] Abbott B et al 2008 Phys. Rev. Lett. 101 211102

[10] Abbot B P et al 2009 Astrophys.J. 701 L68
[11] Abadie J et al 2011 Astrophys.J. 734 L35
[12] Abbott B P et al 2009 Rep. Prog. Phys 72 076901
[13] Acernese F et al 2006 Class. Quantum Grav. 23 S635
[14] Luck H et al 2006 Class. Quantum Grav. 23 S71
[15] LIGO-Virgo Collaboration, LIGO Document T1100322

https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62893
[16] Wilson K G, preprint, Cornell University
[17] Daubechies I, Jaffard S and Journé J L 1991 J. Math. Anal. 22 pp 554-673
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