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Abstract. Quantization is derived as an emergent phenomenon, resulting from the permanent
interaction between matter and radiation field. The starting point for the derivation is the
existence of the (continuous) random zero-point electromagnetic radiation field (zpf) of mean
energy ~ω/2 per normal mode. A thermodynamic and statistical analysis leads unequivocally
(and without quantum assumptions) to the Planck distribution law for the complete field in
equilibrium. The problem of the quantization of matter is then approached from the same
perspective: A detailed study of the dynamics of a particle embedded in the zpf shows that
when the entire system eventually reaches a situation of energy balance thanks to the combined
effect of diffusion and dissipation, the particle has acquired its characteristic quantum properties.
To obtain the quantum-mechanical description it has been necessary to do a partial averaging
and take the radiationless approximation. Consideration of the neglected radiative terms
allows to establish contact with nonrelativistic quantum electrodynamics and derive the correct
formulas for the first-order radiative corrections. Quantum mechanics emerges therefore as
a partial, approximate and time-asymptotic description of a phenomenon that in its original
(pre-quantum) description is entirely local and causal.

1. Introduction
Since the pioneering works in stochastic electrodynamics (SED) [1], [2], quantum mechanics has
been conceived of as an emergent theory arising from a deeper-level dynamics. At the more
fundamental level the world is assumed to be causal, deterministic and local: particles interact
(locally) with (and through) the random, continuous electromagnetic zero-point radiation field
(zpf), and follow well-defined (even if unknown stochastic) trajectories. At the quantum level
the description becomes nonlocal, particle trajectories seem to have lost their sense (and for
many even their existence), discreteness and indeterminacy enter the picture, and the classical
algebra is replaced by a non-commuting one.

The program of SED has gone a long way in retrieving and explaining quantum mechanics,
starting with the harmonic oscillator and including other characteristic ‘quantum’ phenomena
such as diamagnetism and van der Waals forces, among others (see [2]). However, establishing
the connection between these apparently incompatible worlds — the classical and the quantum
— for the general case (and for the atomic case in particular), has not been an easy matter.

Several factors contribute to this difficulty. On the one hand the classical formalism used as a
starting point, and the mathematics that come with it, do not offer a clear indication as to how
to effect the transition to the quantum level from physical principles alone. On the other hand,
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while the emerging (quantum) theory contains characteristic novel phenomena, some central
features of the underlying dynamics disappear altogether in the transition. This is the case, in
particular, with the random zpf, which is considered in SED to be precisely the ultimate cause
for the emergence of the quantum phenomenon.

To try to ‘complete’ the description and recover causality or locality (or both) by simply
adding hidden elements or re-introducing the lost ones into the quantum description, seems an
exercise as futile as trying to reconstruct the raw eggs out of a baked cake. But if the cake
turns out to be delicious one accepts it. The great successes of quantum mechanics are normally
considered a strong enough reason to be satisfied with the theory as it is, and to renounce any
attempt at looking for explanations beyond (or underneath) it.

In this paper we go back to the origins of quantum mechanics, in line with the program
of SED. This means taking the existence of the random electromagnetic zpf as the starting
point and carefully analysing some important consequences of its existence. We will show that
quantization emerges naturally, which is in itself a remarkable outcome. But equally interesting is
what one learns along the way in the transition from the deeper, ‘pre-quantum’ level to the higher
quantum one. Because, as could be expected, quantum mechanics turns out to represent only
a partly averaged, asymptotic approximation (although a very accurate one). The assumptions
and approximations made in this transition help us, thus, to better understand the origin of
some basic quantum features and assign a physical meaning to them.

2. Planck’s law as a consequence of the zero-point field
In this first part of the paper it is shown that Planck’s distribution law for the equilibrium
radiation field can be derived without introducing any discontinuity in the field or in its
interaction with matter. The cornerstone of the derivation is the existence of the zpf as an
integral part of the radiation field. The presentation draws in part from previous work [3], [4].

2.1. The equilibrium radiation field
The existence of a nonthermal field with energy different from zero implies an extension of the
classical thermodynamic description. The starting point for this extension is Wien’s law for the
mean energy U of the oscillators of frequency ω in equilibrium at temperature T,

U(ω, T ) = ωf(ω/T ), (1)

which is a general result of thermodynamics. At T = 0 this equation takes the form

E0 ≡ U(ω, 0) = Aω, (2)

with A constant. In classical thermodynamics the constant A is taken as zero, thereby excluding
a priori the existence of a nonthermal energy. In contrast, the extended treatment admits a zero-
point energy (zpe) for the oscillators that is different from zero. Clearly this simple introduction
of the zpe, being contrary to classical energy equipartition, opens the door to interesting physical
consequences.

The thermal energy distribution of the field oscillators in thermal equilibrium inside a cavity
can be written according to thermodynamics in the general form

Wg(E)dE =
1

Zg(β)
g(E)e−βEdE , (3)

where Zg(β) =
∫
g(E)e−βEdE is the partition function, β = 1/(kBT ), and g(E) is the structure

function. The mean value of any function f(E) is then given by

〈f(E)〉 =

∫ ∞
0
Wg(E)f(E)dE (4)
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which for f(E) = E gives 〈E〉 ≡ U.
The (classical) Boltzmann distribution is obtained from (3) with g(E) independent of E , in

which case

Wcl(E) = Wg=cl(E) =
e−βE∫∞

0 e−βEdE
(5)

and 〈E〉cl = Ucl(β) = β−1 = kBT . This means that to allow for a zpe, g(E) must depend on the
energy; this will lead to a different distribution Wg(E) and hence a different function U(β).

The general form for the distribution Wg(E) implies the recurrence relation〈
Er+1

〉
= U 〈Er〉 − 〈Er〉′ , (6)

where the prime denotes derivative with respect to β. For r = 1 this gives for the thermal energy
variance

σ2 ≡ E2 − U2 = −U ′, (7)

which can be rewritten as the well-known relation σ2 = kT 2 (∂U/∂T )ω = kT 2Cω. Because the
heat capacity Cω remains finite at T = 0, it follows that σ2(T = 0) = 0, meaning that the
dispersion of the energy is suppressed at T = 0, even when E0 6= 0. In other words, a purely
thermodynamic treatment is limited in that it does not allow for the inclusion of a fluctuating
zpe.

To include the zero-point fluctuations it becomes necessary to look for a statistical distribution
Ws(E) that maximizes the entropy Ss for a given mean energy U , defined (up to an arbitrary
additive constant) as Ss = −kB

∫
Ws(E) lnWs(E)dE . In addition to complying with the

constraints of Ws being normalized to unity and 〈E〉s = U(β), the results derived from Ws(E)
should be consistent with those derived from the thermal distribution Wg, In contrast to the
thermodynamic entropy S which is defined in the phase space of the particles, the statistical
entropy Ss is interpreted as a measure of the disorder present in the system [5]. The maximum-
entropy formalism [6] leads to the following result for Ws:

Ws(E) =
1

U
e−E/U . (8)

This distribution gives for the energy moments 〈Er〉s = r!U r, whence the total energy variance
is given by

σ2s =
〈
E2
〉
s
− U2 = U2. (9)

At T = 0 this result reduces to σ2s(T = 0) = E20 ; these are the nonthermal energy fluctuations.
The purely thermal energy variance is therefore given at any temperature by

σ2 = σ2s − E20 = U2 − E20 . (10)

2.2. The Planck distribution
From Eq. (7) it follows that U(β) can be obtained from the thermal energy variance σ2 given
in Eq. (10) as a function of U , by integrating

dβ = −dU/σ2(U) (11)

and inverting β = β(U). The result (subject to the limit condition U →∞ as β → 0) is

U(β) = E0 coth E0β. (12)
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This contains the classical case as a particular solution, corresponding to A = 0 in Eq. (2).
With A = ~/2, corresponding to an energy E0 = ~ω/2 for the zpf modes of frequency ω, (12)
gives the well-known formula

U(β, ω) = 1
2~ω coth 1

2~ωβ, (13)

which shows that the (complete) Planck law is an unavoidable consequence of the existence of
the nonthermal energy E0. This establishes Planck’s law as a physical result whose ultimate
meaning — or source — is the existence of this zpe.

The corresponding partition function, obtained from Eqs. (3) and (4), is

Zg =
1

2 sinh E0β
=

∞∑
n=0

e−βEn =

∫ ∞
0

∞∑
n=0

δ(E − En)e−βEdE , (14)

whence g(E) =
∑∞

n=0 δ(E −En), with the energy values En given by En = E0(2n+1) = ~ω(n+ 1
2).

The distribution (3) turns out to be

Wg(E) =
1

Zg

∞∑
n=0

δ(E − En)e−βE , (15)

giving for the mean value of any function f(E)

〈f(E)〉 =

∫ ∞
0
Wg(E)f(E)dE =

1

Zg

∞∑
n=0

f(En)e−βEn =

∞∑
n=0

wnf(En), (16)

with canonical weights wn = e−βEn/Zg. This shows that the mean value of a function of the
continuous variable E (the energy) calculated with Wg(E), can be obtained equivalently by
averaging over the set of discrete states n, with respective weights wn. Because we are dealing
with a canonical ensemble, the structure of wn suggests identifying En with discrete energy levels
of the quantum oscillators (including the zpe). Both descriptions hold simultaneously; they are
the two formal sides of the same coin.

It is important to stress that Planck’s law has been obtained as a consequence of the
fluctuating zero point energy without introducing any explicit quantum or discontinuity
requirement.1 The fact that Wien’s law (with A 6= 0) is the one that opens the door to the zpe
compels us to view this law as an extension of classical physics that enters into the quantum
domain. Strictly speaking, as a precursor of Planck’s distribution it should be considered to
contain the seed of the first quantum law. Furthermore, since Wien’s law is satisfied by field
and material oscillators alike, Eq. (13) and the ensuing consequences are of general validity,
regardless of the nature of the oscillators. The confirmation that the law which gave birth to
quantum theory stems from the existence of a zpe brings thus to the fore the crucial importance
of this energy for the understanding of quantum mechanics and more generally, of quantum
theory.

Note that in terms of the thermal part UT of the energy, given according to Eq. (12) by

UT = U − E0 =
2E0

e2E0β − 1
, (17)

Eq. (10) reads
σ2 = U2

T + 2E0UT , (18)

1 See [3], [4] for previous derivations. It is interesting to note that an independent derivation of Planck’s law has
been obtained by Dimitrov [7], using ‘averaged’ statistical thermodynamics and the assumption that (classical)
particles possess a random (ultrarelativistic) unobservable, unfreezeable motion.
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in contrast to the classical (purely wave) expression σ2cl = U2
T . The identification of the term U2

T
as a product of the interference of the modes (of frequency ω) of the thermal field suggests to
interpret (the ‘particle’ term) 2E0UT as due to additional interferences, now between the thermal
field and the zpf, whose mean energy is just E0.

3. Quantum mechanics as a consequence of the zero-point field
In this second part of the paper it will be shown that also the quantum laws governing
the dynamics of a particle can be derived without introducing a priori any discreteness or
discontinuity in the description. The cornerstone of the derivation is again the existence of the
zpf in permanent interaction with an otherwise classical particle subject to an external force.
The presentation made here draws in part from previous work [2],[8],[9].

3.1. The particle-zpf system in phase space
We consider a system composed of a charged particle immersed in the zpf. The motion of the
mechanical subsystem (in one dimension, for simplicity) is governed in the nonrelativistic limit
by

ẋ = p/m, ṗ = f(x) +mτ
...
x + eE(t), (19)

where f(x) is the external force, E(t) is the electric component of the zpf in the long-wavelength
approximation and mτ

...
x is the radiation reaction force, with τ = 2e2/(3mc3) (≈ 10−23 s for the

electron).2 The density of points in the particle’s phase space is described by

∂

∂t
R+

∂

∂x
(ẋR) +

∂

∂p
(f(x) +mτ

...
x )R = − ∂

∂p
E(t)R. (20)

We are ultimately interested in describing the particle motion, not for a specific realization of the
field but for the ensemble of its realizations, or alternatively an ensemble of equivalent systems.
We therefore average R(x, p, t) over the realizations of E to obtain the averaged density in the

phase space of the particle, R(x, p, t)
E ≡ Q(x, p, t) . With the help of the projector technique

(see e.g. [8], [10]), this leads after a somewhat lengthy calculation to the Fokker-Planck-type
equation

∂

∂t
Q+ L̂Q = e2

∂

∂p
D̂(t)Q, (21)

where L̂ is the Liouville operator

L̂ =
1

m

∂

∂x
p+

∂

∂p
(f +mτ

...
x ) (22)

and D̂(t) is a complicated integro-differential diffusion operator. More precisely, the diffusion
term can be written in the form [8]

e2
∂

∂p
D̂(t)Q = e

∂

∂p
P̂E

∞∑
k=0

[
eĜ

∂

∂p
(1− P̂ )E

]2k+1

Q, (23)

where P̂ is the smoothing operator that averages over the realizations of E (P̂A = A
E

) and the

operator Ĝ is defined by

ĜA(x, p, t) =

(
∂

∂t
+ L̂

)−1
A(x, p.t) =

∫ t

0
e−L̂(t−t

′)A(x, p, t′)dt′. (24)

2 Note that the correct (integro-differential) version of the radiation reaction term is fully causal. The noncausal
behaviour that comes with the mτ

...
x term is merely an artefact of the approximation made in neglecting all

higher-order derivatives. For an extensive discussion of this point see [2].
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Note that the diffusion term comprises at least a correlation of the form Ei(t)Ek(t′)
E

and hence
contains a factor proportional to the spectral (energy) density of the zpf,

ρzpf(ω) =
~ω3

2π2c3
=

ω2

π2c3
· ~ω

2
. (25)

The interaction between particle and field is therefore represented in Eq. (21) by both the
radiation reaction term and the diffusion term, and it is through the latter that Planck’s constant
enters the picture.

3.2. Particle dynamics in configuration space
Equation (21) provides in principle a (partly averaged) statistical description of the dynamics
of the particle for any time t. It is clear that initially, after particle and field have started
to interact, there is an irreversible process of energy and momentum exchange during which
the field has a randomizing and dissipative effect on the particle dynamics, due to the terms
with E and

...
x in Eq. (21). However, to explore the connection with quantum mechanics we

are specifically interested in the solution in the time-asymptotic limit, when and if a regime
is attained in which this exchange is no longer irreversible. In such situation a balance should
be reached between the mean power radiated and that absorbed by the particle from the field;
this balance condition is discussed in detail in section 3.4. When this occurs, the radiative and
dissipative terms mentioned have produced their main (irreversible) effect in taking the system
to such regime, and one may expect any additional effect arising from these terms to represent
just a radiative correction.

In order to establish the connection with quantum mechanics, let us first go from Eq. (21)
to a description in configuration space. An orderly way to make this transition is by means of
the characteristic (moment-generating) function Q̃ associated with the density Q,

Q̃(x, z, t) =

∫
Q(x, p, t)eipzdp. (26)

The marginal probability density ρ(x, t) is then given by

ρ(x, t) =

∫
Q(x, p, t)dp = Q̃(x, 0, t), (27)

and the (partially averaged) local moments of p are

〈pn〉 (x) = 〈pn〉x =
1

ρ

∫
pnQdp = (−i)n

(
1

Q̃

∂nQ̃

∂zn

)∣∣∣∣∣
z=0

(28)

for any integer n. The Fourier transform of Eq. (21) is (with all surface terms assumed to vanish
at infinity)

∂Q̃

∂t
− i 1

m

∂2Q̃

∂x∂z
− izf(x)Q̃− τ

m
f ′z

∂Q̃

∂z
= −ie2z(˜̂DQ). (29)

By expanding this equation into a power series around z = 0 and separating the coefficients of
zk (k = 0, 1, 2, . . .) one obtains an infinite hierarchy of equations containing momenta of p of
increasing order. The first two equations (coefficients of z0 and z) read

∂ρ

∂t
+

1

m

∂

∂x
(〈p〉x ρ) = 0, (30)
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∂

∂t
(〈p〉x ρ) +

1

m

∂

∂x
(
〈
p2
〉
x
ρ)− fρ− τ

m
f ′ 〈p〉x ρ = −e2 (

˜̂
DQ)

∣∣∣∣
z=0

. (31)

Equation (30) is the continuity equation, with the local (partially averaged) momentum given

by 〈p〉x = −i(∂ ln Q̃/∂z)z=0 (see Eq. (28) with n = 1). Equation (31) describes the transfer of
momentum and contains, in addition to ρ and 〈p〉x , the second moment

〈
p2
〉
x
, which reappears

in the third equation along with
〈
p3
〉
x
, and so on. This coupling between successive equations

creates a highly difficult mathematical problem. However, in the case of interest here the first
two equations decouple from the rest of the hierarchy, as shown below. Therefore only the
first local moments of p intervene in the description of interest, which means that one may
concentrate on the behaviour of Q̃(x, z, t) for small values of z.

From Eq. (28) one obtains 〈
p2
〉
x
− 〈p〉2x = −

(
∂2

∂z2
ln Q̃

)
z=0

. (32)

To find an expression for the right-hand-side term as a function of x we introduce the change of
variables

z+ = x+ ηz, z− = x− ηz, (33)

where η is an as yet undetermined parameter having dimensions of action. We now write Q̃ in
the general form

Q̃(x, z, t) = q+(z+, t)q−(z−, t)χ(x, z, t), (34)

where, according to Eq. (26),

q+(z−, t) = q∗−(z−, t), q−(z+, t) = q∗+(z+, t), χ∗(x, z, t) = χ(x,−z, t). (35)

Equations (27) and (32) become then

ρ(x, t) = Q̃(x, 0, t) = q∗+(x, t)q+(x, t)χ0,

〈
p2
〉
x
− 〈p〉2x = −η2 ∂

2

∂x2
ln ρ+ Σ, (36)

with Σ = 4η2(∂z+∂z− lnχ)z=0, χ0 = χ(x, 0, t). Inserting these results into Eq. (31) one obtains

m
∂

∂t
(〈p〉x ρ)+m

∂

∂x

(
〈p〉2x ρ

)
− η

2

m

∂

∂x

(
ρ
∂2

∂x2
ln ρ

)
−fρ =

=
τ 〈p〉
m

∂f

∂x
ρ− e2 (

˜̂
DQ)

∣∣∣∣
z=0

− 1

m

∂

∂x
Σρ. (37)

3.3. Quantum mechanics in the radiationless approximation
Following the discussion at the beginning of the previous section, we consider that in the time-
asymptotic limit the effect of the terms in Eq. (37) due to radiation reaction (proportional
to τ ∼ e2) and diffusion (also proportional to e2) has become a mere radiative correction of
order α ∼ e2 (the fine structure constant). In addition, we introduce the assumption that the
contribution of the nonfactorizable function χ(z+, z−, t), and hence of Σ in Eq. (37), has also
become small, of order e2. We shall come back to this assumption below (section 4.3). Under
these conditions one may write χ ' χ0 = 1 (by absorbing the dependence on x and t in q− and
q+) and neglect the three terms on the right-hand side of Eq. (37); this is the meaning of the
radiationless approximation.
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In the radiationless approximation Eq. (36) becomes

〈
p2
〉
x

= 〈p〉2x − η
2 ∂

2

∂x2
ln ρ, (38)

so that
〈
p2
〉
x

decouples from the rest of the hierarchy. Equation (29) reduces then to

1

Q̃
∂tQ̃−

i

mQ̃
∂x∂zQ̃ = izf(x). (39)

Writing explicitly Q̃(x, z, t) = q+(z+, t)q−(z−, t), according to (34), this equation gives

1

q+q−
∂t(q+q−)− iη

m

[
1

q+
∂2+(q+)− 1

q−
∂2−(q−)

]
=

i

2η
(z+ − z−)f [12(z+ + z−)]. (40)

Recall that we are interested in small values of z only. Assuming f(z) to be well behaved in
the interval [z−, z+], the mean-value theorem applied to the term on the right-hand side gives
to lowest order in z

(z+ − z−)f [12(z+ + z−)] =

∫ z+

z−

f(u)du = − [V (z+)− V (z−)] . (41)

This result holds for any (well-behaved) potential V (x). One thus gets from Eq. (40)

− iη
m

1

q+
∂2+q+ +

i

2η
V (z+) +

1

q+
∂tq+ = − iη

m

1

q−
∂2−(q−) +

i

2η
V (z−)− 1

q−
∂tq−. (42)

The two sides of this equation depend on different variables and hence separate; let K be the
(real) separation constant. In the limit z → 0 both z+ and z− reduce to x, whence putting
q+(x, t) ≡ eiKtψ(x, t), q−(x, t) ≡ e−iKtψ∗(x, t) (see Eq.(35)) one gets in this limit

−2
η2

m

∂2ψ

∂x2
+ V (x)ψ = 2iη

∂ψ

∂t
(43)

and its complex conjugate, with ρ(x, t) = ψ∗(x)ψ(x). Except for the (constant) factor η to
be determined (see the discussion in the next section), we recognize in (43) the Schrödinger
equation for ψ(x, t). This means that, indeed, a regime of unitary (time-reversible) evolution
has been attained.

3.4. Detailed energy balance
The full equivalence between Eq. (43) and the Schrödinger equation entails the relation η = ~/2.
To prove that this value is correctly predicted by the theory we resort to the condition of energy
balance, which has been assumed to hold in the time-asymptotic limit (see section 3.2).

From the Fokker-Planck-type equation (21) multiplied by p2 and integrated over the entire
phase space it follows (assuming again all surface terms to vanish at infinity) that

1

2m

d

dt

〈
p2
〉

=
1

2m

d

dt

∫
p2Qdxdp =

1

m

〈
fp+mτp

...
x − e2

2
pD̂

〉
, (44)

where it is understood that D̂ acts on Q(x, p, t). Since d 〈V 〉 /dt = −〈fp〉 /m, the total energy
gained or lost in the mean by the particle through radiation exchange is

d

dt
〈H〉 =

d

dt

〈
1

2m
p2 + V

〉
= mτ 〈ẋ ...

x 〉 − e2

2m

〈
pD̂
〉
, (45)
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with H representing the mechanical Hamiltonian. The terms on the right-hand side represent
the average power dissipated by the particle due to Larmor radiation and the average power
absorbed by the particle from the field, respectively. When these terms compensate each other,

mτ 〈ẋ ...
x 〉 =

e2

2m

〈
pD̂
〉
, (46)

〈H〉 becomes constant and energy balance is reached.
In line with the radiationless approximation used above to arrive at Eq. (43), it suffices to

calculate both sides of (46) to lowest order in τ ∼ e2. The left-hand side is readily calculated
using the solutions of Eq. (43) (in terms of η) and gives for the ground state

mτ 〈ẋ ...
x 〉 = −mτkω4

0k |x0k|
2 , (47)

where ω0k = (E0 − Ek) /2η, x0k =
∫
ψ∗0xψkdx, Ek are the energy eigenvalues and ψk the

corresponding eigenfunctions. To calculate the right-hand side of (46) one must resort to Eq.
(23) to lowest order in e2, introduce Eq. (25) for the spectral density of the zpf, and take into
account that energy balance is established in the time-asymptotic limit, so that the integral over
time extends to infinity. Using again the solutions of Eq. (43), one arrives finally at

e2

2m

〈
pD̂
〉

= −}mτ
2η

∑
k

ω4
k0 |x0k|

2 . (48)

Equating this result with Eq. (47) one obtains for the parameter η the value η = }/2, thus
recovering the Schrödinger equation

i~
∂ψ

∂t
= − }2

2m
∇2ψ + V ψ (49)

for any potential V (x). Notice that the Planck constant in Schrödinger’s equation comes directly
from the zpf through Eq. (48). It is notable that the dipole approximation for the zpf has been
sufficient to arrive at this result. Equations (47) and (48) have exactly the same structure,
which means that balance is achieved term by term; one speaks therefore of detailed energy
balance. In fact a spectrum proportional to ω3, being responsible for the ω4

k0 factor in Eq.
(48), is the only one that guarantees detailed energy balance. This establishes a fundamental
difference with classical systems, for which equilibrium is reached only for the Rayleigh-Jeans
law, proportional to ω2. Since a spectrum ∼ ω3 is the single Lorentz-invariant one [1],[11], it
is verified that Lorentz invariance and detailed equilibrium with matter are intimately related
properties of the zpf. In particular, atomic stability is reached for those specific (stationary and
discrete) states for which the Larmor radiation along the orbit is compensated in the mean by
the energy absorbed from the field and turned into fluctuating motions.

3.5. Quantum nonlocality
With the vanishing of the radiative terms on the right-hand side, Eq. (37) reduces (now with
η = }/2) to

m
∂

∂t
(〈p〉x ρ)+m

∂

∂x

(
〈p〉2x ρ

)
− }2

4m

∂

∂x

(
ρ
∂2

∂x2
ln ρ

)
−fρ = 0. (50)

The behaviour of the quantum system is therefore fully described (in the radiationless
approximation) by this equation along with the continuity equation (30) (plus the energy-
balance condition), or alternatively by the Schrödinger equation and its complex conjugate,
with ρ(x, t) = ψ∗ψ.
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Note that the only term that distinguishes Eq. (50) from the corresponding classical equation
is the one containing ln ρ. From Eq. (38) it is clear that this term originates in the fluctuations
of the momentum, transcribed to configuration space. The source of these fluctuations is the zpf,
which also determines their size through Planck’s constant. Hence the (momentum) quantum
fluctuations are conventional fluctuations having a causal origin. Their mean value is given by

〈
σ2p(x)

〉
=

〈
− }2

4m

∂2

∂x2
ln ρ

〉
=

}2

4

∫
ρ

(
1

ρ

∂ρ

∂x

)2

dx. (51)

The connection of this term with the quantum potential is readily established by applying the
Madelung transformation ψ(x, t) =

√
ρ exp(iS/}) to the Schrödinger equation, which leads to

the Hamilton-Jacobi-type equation

∂S

∂t
+

1

2m

(
∂S

∂x

)2

− }2

2m

1
√
ρ

∂2
√
ρ

∂x2
+ V = 0. (52)

The term Qp =
(
−}2/2m

)
(1/
√
ρ)(∂2

√
ρ/∂x2), the so-called quantum potential, ascribes to this

(otherwise classical) equation a statistical and nonlocal meaning. This is precisely the term
responsible for the nonlocality of Bohm’s theory, where it is also known as ‘Bohm potential’
[12].3 As is clear from the present derivation, however, it is of kinematic origin.4 It is important
to observe that this nonlocality is generated by the reduction of the statistical description to
the configuration space, and appears even in the case of a single particle — with the exception
of the free particle described by a plane wave, ρ = const. For a system composed of two or
more particles, additional nonlocalities arise. For instance, in the two-particle case the phase-
space density described by the respective Fokker-Planck-type equation — which is an extension
of Eq. (21) — depends on the variables of both particles. This will be reflected in general
in the configuration-space description by means of a nonfactorizable joint probability density
ρ(x1, x2) = ρ1(x1)ρ2(x2)ρ12(x1, x2). The corresponding ‘quantum potential’ for particle 1, for
instance, will be of the form

Qp1(1, 2) = − }2

2m

[
∂21
√
ρ1√
ρ1

+
∂21
√
ρ12√
ρ12

+
1

2

∂1ρ1
ρ1

∂1ρ12
ρ12

]
, (53)

containing two additional terms that depend on the presence of particle 2. These terms represent
a nonlocal action of particle 2 on particle 1. Indeed, a more detailed analysis of the two-
particle problem, following a procedure slightly different from the one exposed here, has led to a
clarification of the mechanism leading to the entanglement of states which is normally associated
with Bell’s inequalities [14].

4. Radiative corrections
This third part of the paper is devoted to the analysis of further (first-order) effects deriving from
the particle-field interaction in the quantum regime. Firstly the condition of energy balance is
analysed for a particle in an excited state. More generally, absence of detailed balance is shown
to give rise to radiative transitions, with the respective transition probabilities exactly as given
by nonrelativistic quantum electrodynamics (qed). Finally, other radiative corrections to first
order include the Lamb shift and a (nonrelativistic) mass correction.

3 As mentioned in section 3.2, 〈p〉x /m is the local mean velocity of the subensemble of particles moving in the
neighbourhood of x at time t; hence the instantaneous velocity of an individual particle differs from it by a
stochastic component δẋ. This is important with regard to Bohm’s theory, which gives information only about
the mean trajectories by neglecting δẋ. Due to this stochastic component, quantum trajectories are entirely free
to intersect.
4 This result is in line with previous conclusions arrived at independently by other authors; see Ref. [13].
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4.1. Energy balance for a particle in an excited state
In section 3.4, detailed energy balance was shown to hold with both particle and field in their
ground state. Assume now that the particle has by some external mechanism been transferred
to an excited state n, the background field still being in its ground state. Then both terms on
the right-hand side of (45) must be recalculated. For the first term one obtains instead of (47)

mτ 〈ẋ ...
x 〉n = −mτ

∑
k

ω4
nk |xnk|

2 . (54)

For the second term, on the other hand, one obtains instead of (48) (with η = }/2)

e2

2m

〈
pD̂
〉
n

= −mτ
∑
k

ω4
kn |xnk|

2 signωkn. (55)

Both expressions have again the same structure, except that the latter contains now a mixture
of positive and negative terms, whilst in Eq. (54) all terms have the same sign. The upshot is
that there cannot be detailed balance between the zpf and a particle in an excited state. This
confirms that only the ground state of the particle is stable in the sole presence of the zpf.

Let us now investigate whether there is any background field of spectral density ρ(ω) =
ρzpf(ω)γ(ω) (with γ(ω) to be determined), with which a mechanical system in a particular
excited state n can be in equilibrium. The radiation-reaction term is again given by Eq. (54).
For the ‘diffusion’ term, which depends on the spectral density, we obtain instead of Eq. (55)

e2

2m

〈
pD̂
〉
n

= −mτ
∑
k

ω4
kn |xnk|

2 γ(|ωkn|)signωkn. (56)

Both Eqs. (54) and (56) contain in general mixtures of terms of different frequencies (ωnk for
different values of k), but with different signs, so that detailed balance cannot be satisfied in
general. Only for the particular case in which all values of |ωnk| coincide, the possibility of
detailed balance exists in principle. This possibility is realized for the harmonic oscillator, the
single system for which all |ωnk| are equal (and coincide with the oscillator frequency ω0). Using
again the solutions provided by the Schrödinger equation, Eqs. (54) and (56) give

mτ 〈ẋ ...
x 〉n = −1

2
}τω3

0(2n+ 1),
e2

2m

〈
pD̂
〉
n

= −1

2
}τω3

0γ(ω0). (57)

On equating these two results we conclude that indeed, detailed balance exists between a
harmonic oscillator in its excited state n and a background field with spectral energy density

ρn(ω) = ρzpf(ω)(2n+ 1) =
~ω3

2π2c3
(2n+ 1) (58)

This result should not come as a surprise, since it corresponds to a field with precisely an energy
per normal mode 1

2}ω(2n + 1) as derived in section 2, equal to the energy of the mechanical
oscillators with which it is in equilibrium. This is the secret of the Planck distribution and
field quantization: equilibrium with matter is reached only for those oscillators that have energy
1
2~ω(2n+ 1).

4.2. Radiative transitions: Einstein A and B coefficients
Now we investigate some important implications of the absence of detailed balance. This can
be done by introducing Eqs. (54) and (56) into (45), to determine the average rate of energy
loss or gain for a particle in state n; the result is

dHn

dt
= −mτ

∑
k

ω4
nk |xnk|

2 [1− γ(|ωnk|)signωkn] . (59)
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With γ(ω) = 1+γa(ω), where γa(ω) represents the contribution from the excited (or additional)
background field to the spectral energy density, this equation takes the form

dHn

dt
= mτ

∑
k

ω4
nk |xnk|

2 [(γa)ωkn>0
− (2 + γa)ωkn<0

]
. (60)

The first term within brackets represents the absorptions and the second one, the emissions. It is
clear from this result that there can be absorptions only when the background field is excited (or
there is an external component), whilst the emissions can be either ‘spontaneous’ (in presence
of just the zpf, the term with coefficient 2) or stimulated by the additional field. The coefficients
appearing in the various terms determine the respective rates of energy gain and energy loss;
therefore, they should be directly related with Einstein’s A and B coefficients.

Indeed, for the coefficient A, which is defined as the time rate for ‘spontaneous’ emissions via
dHn = −}

∑
k ωnkAnkdt, Eq. (60) with γa = 0 gives

Ank =
4e2 |ωnk|3

3}c3
|xnk|2 =

2τm

}
|ωnk|3 |xnk|2 , (61)

which coincides with the result given by nonrelativistic qed [15]. For the coefficients B, which
give the rate of energy gain or loss due to transitions induced by the external field and are
defined through dHn = ±}

∑
k ωnkBnkρa(ωnk)dt, Eq. (60) gives

Bnk = Bkn =
mτω4

nk |xnk|
2 γa(ωnk)

} |ωnk| ρa(ωnk)
=

4π2e2

3}2
|xnk|2 , (62)

which again coincides with the respective formula of qed. This confirms the key role played by
both radiative terms in determining the rates of transition. According to traditional wisdom,
the A coefficient is due to the commutator of the creation and annihilation field operators. As a
mathematical rule this is of course a nice description. From a present point of view its meaning
becomes transparent: the factor 2 comes directly from the combined effect of Larmor radiation
and the zpf (in equal parts) in ‘inducing’ emissions from an excited state.

The expressions for the Einstein coefficients involve each a single frequency |ωnk| , which
confirms that the system as a whole reaches a state of detailed balance, i.e., energy balance
of matter with the field at every separate frequency. The theory has thus led us from global
balance to detailed balance in the quantum regime. We recall that this demand was one of
Einstein’s major hypotheses in his pioneering work where he introduced the absorption and
emission coefficients [16].

4.3. Lamb shift and mass correction
In the context of the present work, the radiative corrections can be traced to the terms that were
discarded from the right-hand side of Eq. (37) when taking the radiationless approximation that
led to Eq. (50). The first and the second terms are the ones that intervene in the energy balance
equation (45), being responsible for the finite lifetimes of excited states and the transitions
between states. The third term, the one containing Σ in Eq. (37), represents a contribution to
the momentum fluctuations, whence to first order in perturbation theory it adds to the mean
kinetic energy of a stationary state an amount given by 〈Σ〉 /2m. This term accounts for another
important radiative correction, namely the Lamb shift of the atomic levels (and an accompanying
mass correction).

Because of the complexity of the calculations (which are the subject matter of a future
paper) we report here the results for a simple system, namely the harmonic oscillator. An
elementary procedure can be followed in this case to calculate the value of the energy shift, by
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going back to the Langevin equation (19) and carrying out a perturbative treatment [8] (see
also Refs. [1], [2]). The correction to the mean kinetic energy can be shown to be given by
the term δE = −1

2 〈d ·E〉, which originates in the coupling of the instantaneous fluctuations of
the electric dipole d to the electric component of the zpf. Qualitatively this corresponds to one
of the most popular interpretations of the Lamb effect in qed, and in particular, to the noted
model of Welton [17]. However, by noting that for the harmonic oscillator under energy balance
〈d ·E〉 = (τm/ω)

〈
ẍ2
〉
, one can write this shift in the alternative form δE = −(τm/2ω)

〈
ẍ2
〉

and interpret it as due to Larmor radiation. This is the kind of ambiguity that appears in qed
due to the freedom to reorder the operators.

The calculations of the above term are readily performed to lowest order of approximation
and give two corrections, namely a mass renormalization of value δm = 3m/(8πα) and a level
(Lamb) shift of value

δE =
α~2ω2

πmc2
ln
ωc
ω
, (63)

where α = e2/~c and ωc is some cutoff frequency. The reason for the large value of both results
is the long tail of the spectral density ρ(ω) ∼ ω3 at high frequencies. Fixing the cutoff at
ωc = mc2/~, reasonable for a nonrelativistic calculation, one obtains δm/m ∼ α and for δE the
same value as predicted by nonrelativistic qed [15],

δE
1
2~ω

=
2α

π

~ω
mc2

ln
mc2

~ω
. (64)

This represents a very small correction,5 but one that played an important role during the
foundation of qed and is frequently considered one of the best successes of qed. With this, the
approximation χ = 1 made above becomes fully justified.

5. Concluding remarks
Several important conclusions and observations can be drawn from the results here presented.
Of course the main one is that the quantum behaviour can be understood as emerging from
the interaction matter-zpf. The ubiquitous presence of the zpf implies thus the omnipresence of
the quantum phenomenon. The quantum properties are not intrinsic to matter or field, but are
something more interesting and rich: they belong to a world of emerging properties.

In the present account the quantum fluctuations of matter lose their cryptic meaning to
become a causal phenomenon, produced by the action of the random zpf. Analogously, quantum
indeterminism arises as an anticipated property of the statistical description of the stochastic
dynamics. The Heisenberg inequalities find thus a natural explanation: the minimal variances
of the dynamical variables determined by the inequalities are those impressed by the zpf, which
itself fluctuates with an intensity proportional to ~.

Nonlocality, that other quantum mystery, is explained in the present context as an outcome
of the description at the quantum level. At the deeper level the theory is entirely local, yet
an effective nonlocality arises as a result of the reduction of the statistical description from
phase space to configuration space. This nonlocality is encapsulated in the quantum potential,
which represents a kinetic contribution to the energy due to the momentum fluctuations. The
correlations among dynamical variables that pertain to two or more entangled particles give rise
to additional nonlocalities, e.g. of the EPR or Bell type.

The quantum behaviour of matter emerges in the time-asymptotic limit, when the combined
diffusive and dissipative action of radiation has driven the system to a regime of unitary time

5 Note that this result is independent of the state, hence it does not lead to any observable shift for the harmonic
oscillator.
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invariance. Herein lies the secret of the stability of atomic states, which quantum mechanics
is unable to reveal due to its unawareness of the zpf: stationarity is reached for certain orbital
motions only. Quantum mechanics is derived once the radiative terms can be neglected.
Taking due account of these neglected terms to first order provides correct results for the
rates of transition between stationary states and the corresponding radiative corrections of
(nonrelativistic) qed.

In between the initial time (when particle and zpf start to interact) and the quantum regime
there is a new physics, which is neither the purely classical one — since it contains Planck’s
constant and the zpf as important ingredients — nor the quantum one — since for short
times even the Heisenberg inequalities can be violated. In particular the function Q(x, p, t)
should furnish a better phase-space description, an important matter that requires further
consideration. Moreover, there are other properties of quantum systems that from the present
perspective should emerge from a deeper level, such as the spin of particles and all that comes
with it. In summary, there is a wide interesting field open to study.

One should of course bear in mind that ours is not the only possible deeper-level explanation
of the quantum phenomenon. In recent times the notion that quantization is an emergent
phenomenon, possibly rooted on a classical dynamics, has gained much ground and several
interesting — alternative or complementary — theories have been put forward [18]. Doubtlessly
a finer and richer picture of the quantum world, and hopefully a physically more satisfactory
one, will emerge as a result of these developments.
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