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Abstract. The use of renormalization group (RG) in the analysis of nonlinear dynamical
problems has been pioneered by Goldenfeld and co-workers [1]. We show that perturbative
renormalization group theory of Chen et al can be used as an effective tool for asymptotic
analysis for various nonlinear dynamical oscillators. Based on our studies [2] done on two-
dimensional autonomous systems, as well as forced non-autonomous systems, we propose a
unified methodology — that uses renormalization group theory — for finding out existence of
periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The
technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles
and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage
over linear stability analysis in analyzing centers.

1. Introduction
In the early 1990s Chen, Goldenfeld and Oono proposed a new method based on renormalization
group (RG) [1, 3] to analyze nonlinear dynamical problems. Their method was able to extract
the asymptotic behaviour of solutions to differential equations. In quantum field theory (QFT),
it’s quite well known that RG equations [4] have the peculiar capability of improving the “global”
nature of functions obtained in the perturbation theory (which is essentially “local”). The RG
flow equations may be interpreted as the following: any physical quantity Q(α, β, µ) should have
no dependence whatsoever, on the renormalization point µ which is arbitrarily chosen and is
absent from the original Lagrangian of the problem, i.e.

dQ
dµ

= 0. (1)

The concept of such a floating renormalization point was first introduced in a classic paper
by Gell-Mann and Low [5]. Chen et al relying heavily on analogies and ideas drawn from RG
method for QFT, formulated their own brand of RG which can be used effectively to analyze
dynamical systems. They showed how RG can predict the asymptotic behaviour of solutions to
various nonlinear differential equations and in the process demonstrated that RG is equivalent
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to various singular perturbation techniques used in nonlinear dynamics like the multiple scale
analysis, boundary layer technique, asymptotic matching, WKB method etc. However the chief
advantage of RG over traditional perturbative techniques lies in the fact that it does not require
any ad hoc assumptions, rather it simply uses a naive perturbative expansion. The mathematical
reasons as to why the RG method of Chen et al works has been discussed by Kunihiro [6]. The
study of nonlinear differential equations in a two dimensional dynamical system is of considerable
interest to researchers across disciplines. And since RG method of Goldenfeld et al extracts the
asymptotic behavior of solutions to differential equations, makes it particularly handy while
analyzing periodic solutions to nonlinear dynamical problems which will be the focus of this
study.

2. The Methodology
How does one apply the RG principle to a problem in dynamics? We begin by observing the fact
that any periodic solution in 2-dimensions can be expressed as a Fourier series with amplitude
A and phase of the lowest harmonic θ determining the amplitude and phase of the higher order
ones. The amplitude and phase are the quantities that will feature in the renormalization flow
equations. The renormalization procedure takes advantage of the fact that for a given phase
path (see Fig. 1), the initial condition can be taken at any point, τ , along the path without
affecting the final outcome at t i.e. x(t) remains the same and independent of τ . This condition
ultimately leads to the RG flow equations. In this respect it is akin to the Bogoliubov-Krylov
method [7]. But as mentioned earlier, the advantage is that RG uses a naive perturbation theory;

Past

t
0

t

�

x

y

Figure 1. The initial condition can be at any point on the path

and we do not need to anticipate scales (as in multiple scales method) or make an assumption
about slowly varying amplitudes and phases (Bogoliubov-Krylov).
Suppose we have an ordinary differential equation of the form: ẍ + ω2x = εF (x, ẋ). If one
attempts to solve the equation using an expansion, x(t) = x0 + εx1 + ε2x2 + · · · , it results in
breakdown of the perturbation theory at times t such that ε(t− t0) > O(1) due to the presence
of secular terms. Thus a naive expansion of the dynamical variable leads, in the asymptotic
limit, to an unphysical answer. If t be the time at which we want to know x(t) and t0 the initial
time, then the perturbative answer x(t) diverges when t − t0 → ∞. This is completely similar
to divergence in field theories where a physical quantity (e.g. two point correlation function)
diverges as the renormalization cutoff Λ → ∞. If we are dealing with physical variables, we must
always have quantities that are finite and while this is achieved in field theory by constructing
running coupling constants, it is done for the differential equation by introducing an arbitrary
time scale τ and letting the amplitude and phase depend on τ . To regularize the perturbation

Continuum Models and Discrete Systems Symposia (CMDS-12) IOP Publishing
Journal of Physics: Conference Series 319 (2011) 012017 doi:10.1088/1742-6596/319/1/012017

2



series, RG technique uses the arbitrary time τ to split t− t0 as (t− τ) + (τ − t0) and absorbing
the terms containing τ − t0 into the respective renormalized counterparts A and θ of A0 and θ0.
At the end of the process one arrives at the RG-flow-equations for A and θ:

dA

dτ
= f(A, θ) (2)

dθ

dτ
= g(A, θ) (3)

For autonomous systems, f and g are generally function of A alone. We propose to use flow
equations (2) and (3) to differentiate between oscillators which are of the center variety and
limit cycles. The center type oscillation consists of a continuous family of closed orbits in phase
space, each orbit being determined by its own initial condition. This implies that the amplitude
A gets fixed, once the initial condition is set. This must lead to,

dA

dτ
= 0. (4)

This statement is exact and is not tied to any perturbation theory argument. On the other hand
for the limit cycle ,

dA

dτ
= f(A), (5)

such that the flow equation (5) has a fixed point. The fixed point corresponding to where
f(A∗) = 0 (A∗ 6= 0), has to be stable for the limit cycle to be stable and A∗ gives the radius of
the limit cycle. And if A∗ = 0 is a fixed point of equation (5), then we have either a focus or a
node.
This simple prescription, though not proved rigorously, appeals to one’s intuition when one notes
that (i) A = 0 means the assumed periodic solution has zero amplitude and hence hints at an
attractor (a node or a focus), (ii) f (A) = 0∀A ≥ 0 hints at a family of non-isolated periodic orbits
surrounding the fixed point and so a center solution is implied, and (iii) vanishing of dA/dτ at
A = A∗ 6= 0 logically indicates that an isolated periodic orbit of amplitude A∗ happens to be
surrounding the fixed point.
The calculation of f(A) requires the use of perturbation theory. Application of perturbation
theory is possible only if one can locate a linear center (the basic periodic state) about which
to perturb. Locating a center can sometimes be straightforward, for example: ẋ1 = x2, ẋ2 =
−∂V/∂x1, where V is a general anharmonic potential, V = x21/2 + λ1x

3
1/3 + λ1x

4
1/4, where

(x1, x2) = (0, 0) is a linear center around which perturbation theory can be done; similarly for
the Van der Pol oscillator ẍ+ εẋ(x2 − 1) + x = 0, the origin(x = 0, ẋ = 0) is a center for ε = 0.
For the Lotka-Volterra population dynamics model — ẋ1 = x1 − x1x2, ẋ2 = −x2 + x1x2 the
origin is a saddle but the other fixed point, (1, 1), is a center. In such cases shifting the origin
to the center is the first step in the process of determining f(A).
A more complicated situation can arise in few cases such as the Belushov-Zhabotinsky reaction
[8, 9] system (discussed later). In that case, a transfer of origin to the fixed point has to be
followed by a proper setting of parameters to make the origin a center which is the starting point
of our perturbative method. This raises the problem that the given dynamical system may not
have a relevant parameter at all, e.g. the well known paradigm for a limit cycle,

ż = (1 + i)z − β|z|2z, (6)

where z = x + iy is the complex variable and β > 0. The only fixed point is the origin and it
is an unstable focus for all β. However, we can overcome this difficulty by considering the more
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general system

ż = (α1 + iα2)z − β|z|2z. (7)

The origin is now a stable focus for α1 < 0, unstable focus for α1 > 0 and a center for α1 = 0. It
is this center about which one can set up a perturbation theory. The perturbative determination
of f(A) and g(A) thus involves the following steps:

(i) Find all the fixed points of the system and identify the linear centers.

(ii) If there are no linear centers, look to extend the parameter space and see if a linear center
can be located as the parameters are changed.

(iii) For every linear center, thus located, we need to check the existence of a limit cycle by
perturbatively constructing f(A) and g(A).

(iv) If linear center is absent even after extension of the parameter space this methodology can’t
handle the problem.

3. Examples
As a test case let us consider a general 2D-dynamical equation represented by,

ẍ+ x = −kẋ− εf(x, ẋ) + F cosΩt, (8)

where f(x, ẋ) is a nonlinear function of x and ẋ. For simplicity we will first consider only the
autonomous cases, i.e. where F = 0. We will deal with non-autonomous case later on.

3.1. Duffing Oscillator
In order to elucidate the RG methodology we take a fairly simple and well studied nonlinear
oscillator, the Duffing oscillator (f(x, ẋ) = x3)), as our starting point and do the RG calculation
in detail. The equation of motion of this damped nonlinear oscillator is given by,

ẍ+ kẋ+ ω2x+ λx3 = 0. (9)

We immediately see that a linear center exists for k = λ = 0 and around this limit we can do our
perturbative calculation. We naively expand x as x = x0+kx′1+λx1+k2x′2+λ2x2+kλx′′2+ · · · .
Then substituting this into Eq.(9), we obtain the following equations at different orders of λ
and k:

ẍ0 + ω2x0 = 0, (10)

ẍ1 + ω2x1 = −x30, (11)

ẍ′1 + ω2x′1 = −ẋ0. (12)

We set the initial condition as x(t = 0) = A0 and ẋ(t = 0) = 0. We then write the solution
of Eq.(10) as x0 = A0 cosωt, so that x0 picks up the initial condition, x0(t = 0) = A0. Hence
for the subsequent orders, the initial condition becomes xi(t = 0) = ẋi(t = 0) = 0 for all i ≥ 1.
Using the zeroth order solution we rewrite Eq.(11) and Eq.(12) as:

ẍ1 + ω2x1 = −A3
0

4
(cos 3ωt+ 3 cosωt) , (13)

ẍ′1 + ω2x′1 = ωA0 sinωt. (14)
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Keeping in mind the initial conditions, we can immediately write the solutions to the above
equations,

x1 = −3A3
0

8ω
t sinωt+

A3
0

32ω2
(cos 3ωt− cosωt), (15)

x′1 = −A0

2
t cosωt+

A0

2ω
sinωt. (16)

Upto this order, the displacement of the oscillator can be written as,

x(t) = A0 cosωt−
3λA3

0

8ω
(t− τ + τ) sinωt+

λA3
0

32ω2
(cos 3ωt− cosωt)

−kA0

2
(t− τ + τ) cosωt+

kA0

2ω
sinωt. (17)

Here we have split the interval 0 to t as 0 to τ and τ to t in accordance with our prescription
for renormalization. In order to remove the divergences, we introduce two renormalization
constants, Z1(0, τ) and Z2(0, τ), in the following manner:

A0 = A0(t0 = 0) = A(τ)Z1(0, τ), (18)

0 = θ0(t0 = 0) = θ(τ) + Z2(0, τ). (19)

The renormalization constants have the expansions,

Z1(0, τ) = 1 + a1λ+ a′1k + · · · , (20)

Z2(0, τ) = b1λ+ b′1k + · · · , (21)

so that the constants ai and bi can be chosen order by order to remove divergences arising at
each order. One needs to note here that the presence of nonlinear perturbations means that A0

and θ0 do no longer remain constants of motion. We now absorb the τ − t0(= 0) containing
terms into the renormalized counterparts A and θ of A0 and θ0 so that both are now functions
of τ . We can now rewrite Eq.(17) as

x(t) = A cos (ωt+ θ) + (a1λ+ a′1k)A cos (ωt+ θ)− (b1λ+ b′1k)A sin (ωt+ θ)

− 3λA3

8ω
(t− τ + τ) sin (ωt+ θ) +

λA3

32ω2

(
cos 3 (ωt+ θ)− cos (ωt+ θ)

)
− kA

2
(t− τ + τ) cos (ωt+ θ) +

kA

2ω
sin (ωt+ θ) . (22)

Then choosing a′1 = kAτ/2, a1 = 0, b′1 = 0 and b1 = −3λτ/8ω, one gets rid of the τ − 0
containing terms and we write Eq.(22) as

x(t, τ) = A cos (ωt+ θ)− 3λA3

8ω
(t− τ) sin (ωt+ θ) +

λA3

32ω2

(
cos 3 (ωt+ θ)− cos (ωt+ θ)

)
−kA

2
(t− τ) cos (ωt+ θ) +

kA

2ω
sin (ωt+ θ) . (23)

Since τ does not appear in the original problem it should not be in the final solution. Therefore
we impose the condition that the solution has to be independent of τ i.e. (∂x/∂τ)t = 0, for any
t and this yields (to the lowest order) the flow equations:

dA

dτ
= −kA

2
, (24)
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dθ

dτ
=

3λA2

8ω
, (25)

which integrate to A(t) = A0e
−kτ/2 and θ = θ0 +

3λA2

8ω τ . Finally we set τ = t to get rid of
remaining τ−dependence, to get

x(t) = A cos [Ωt+ θ0] +
λA3

32Ω2

(
cos 3(Ωt+ θ0)− cos(Ωt+ θ0)

)
+

kA

2Ω
sin(Ωt+ θ0), (26)

where Ω = ω + 3λA2/8ω.
When there is no damping term, i.e. k = 0, we have the conservative anharmonic oscillator,

ẍ+ ω2x+ λx3 = 0, (27)

for which the fixed point (0, 0) in the x− ẋ plane (i.e. x− y plane) is a center. And as expected
the flow equation in this case reduces to,

dA

dτ
= 0, (28)

meaning we have a center. The periodic solution correct to first order in λ is given by

x(t) = A cosΩt+
λA3

32Ω2
[cos 3Ωt− cosΩt] +O(λ2) , (29)

where Ω is the corrected frequency given by the expression:

Ω = ω +
3λA2

8ω
+O(λ2). (30)

The standard results [10] for the oscillator have, thus, been correctly captured and we find that
the emergence of x = ẋ = 0 as a center is confirmed by the fact that dA/dτ = 0.

3.2. Van der Pol Oscillator
As our second example we turn to the well known paradigm for limit cycle — the Van der Pol
oscillator i.e. f(x, ẋ) = εẋ

(
x2 − 1

)
and F = 0 in Eq. (8). Thus the equation of motion is,

ẍ+ εẋ
(
x2 − 1

)
+ ω2x = 0. (31)

We look at it as a second order dynamical system: ẋ = y, ẏ = −εy(x2 − 1) − ω2x, in order to
identify the fixed points. Clearly the only fixed point of the system is at the origin which is a
stable focus for ε < 0 and unstable focus for ε > 0. For ε = 0 Eq. (31) is simply the well known
equation for a simple harmonic oscillator and thus we have located a center about which we can
base the perturbation expansion around. Expanding x as x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · ,
we obtain at different orders of ε,

ẍ0 + ω2x0 = 0, (32)

ẍ1 + ω2x1 = −ẋ0(x
2
0 − 1). (33)

We work with initial condition x = A0 at t = 0 and ẋ = 0 at t = 0. Proceeding in an identical
manner as we did for the Duffing oscillator we can arrive at the following flow equations:

dA

dτ
=

εA

2

(
1− A2

4

)
+O(ε2), (34)

dθ

dτ
= 0 +O(ε2). (35)
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The flow equations obtained are in accordance with what our prescription suggests has to be
the structure of the RG flow in case of a limit cycle solution. One can immediately see that the
flow has a stable fixed point at A2 = 4 which in fact is the usual answer for Van der Pol limit
cycle for small ε. The solution upto this order of perturbation is given by

x(t) = A cos(ωt+ θ)− εA3

96ω2

(
sin 3(ωt+ θ)− 3 sin(ωt+ θ)

)
+O(ε2). (36)

Its well known that in order to obtain the correct results for the Van der Pol oscillator one must
anticipate the hidden multiple scale in the problem and include it in the perturbation expansion.
But RG starts with a simple expansion and the hidden multiple scales are automatically
identified. To illustrate this point we need to calculate the flow equations upto the next higher
order. The resultant flow equation turns out to be,

dA

dτ
=

εA

2

(
1− A2

4

)
+O(ε3), (37)

dθ

dτ
= −ε2

8

(
1− A4

32

)
+O(ε3). (38)

One can immediately see that the usual multiple scales T1 = εt, T2 = ε2t and so on, used in the
analysis of Van der Pol oscillator appear naturally in the flow equations.

3.3. Belushov-Zhabotinsky reaction
An similar approach is effective for the so called Belushov-Zhabotinsky reaction system (chlorine
dioxide-iodine-malonic acid reaction). A relatively recent two variable model [8, 9] based on the
fact that the concentrations of the intermediaries I−(x) and ClO−

2 (y) vary on a much faster
time scale than ClO2, I2 and Malonic acid is given by,

ẋ = a− x− 4xy

1 + x2
, (39)

ẏ = bx

(
1− y

1 + x2

)
. (40)

The constants ‘a’ and ‘b’ are parameters which depend on the rate constants and the
approximately constant concentrations of the other reactants. First we note that there is only
one fixed point x = a/5 and y = 1 + x2 = 1 + a2/25. And thus our first step is to shift the
origin to (a/5, 1 + a2/25) i.e. use the shifted variables X(= x + a/5), Y (= y + 1 + a2/25). A
linear stability analysis of the resulting system about the fixed point X = Y = 0 reveals that
it’s a center for some b∗ = 3a/5− 25/a. Further that the origin is an unstable focus for b < b∗

and stable for b > b∗. As discussed we need to fix the parameters to proceed. So we pick a
value of ‘a’ and choose b = b∗ − δ, where δ � b∗. One carries out a perturbation analysis for
the variables X and Y by assuming that the amplitude is small for small δ. The amplitude flow
works out to be

dA

dτ
= −a

5
δΩA+

ΩA3(
1 + a2

25

)2

[
3a4

125
− 3a2 − 315 +

1875

a2

]
, (41)

where Ω2 = a
(
1 + a2

25

) (
3a
5 − 25

a

)
. From the flow equation we can conclude that a limit cycle

exists for positive values of δ. It is apparent that as we measure the value of ‘a’ for which limit
cycles can exist, there is a cyclic-fold bifurcation at a = ac '

√
191.43 — obtained by setting

the expression inside square bracket to zero.
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Figure 2. The figure shows the phase diagram of the glycolytic oscillator given by Eqs. (42) and (43). The
curve (solid line) separates the figure into two regions. For parameters in the shaded region, one gets limit cycle
while unshaded region corresponds to parameters giving rise to a stable focus. Linear stability analysis predicts
center for parameters on the curve.

3.4. Glycolytic oscillator
We now turn to a rather interesting example which clearly illustrates the usefulness of shifting
of origin. Further it requires a determination of the locus of Hopf bifurcation points, to set up
the perturbation theory, in order to locate the limit cycle. This example is drawn from biology –
the glycolytic oscillator. Selkov [11] gave a simple mathematical model describing this oscillator
as a 2-dimensional dynamical system. The variable x is the concentration of ADP (adenosine
diphosphate) and y that of F6P (fructose-6-phosphate). The dynamics is given by

ẋ = −x+ (a+ x2)y, (42)

ẏ = b− (a+ x2)y, (43)

where ‘b’ is the rate of fructose production and ‘a’ the rate at which fructose decomposes
(converts to ADP). It should be noted here that the presence of ADP catalyzes this conversion
and hence ‘a’ is augmented to ‘a + x2’. The only fixed point of the system is at x = b,
y = b/(a+ b2). It turns out to be a stable focus for a certain parameter range and an unstable
focus for certain others. The crossover from stable to unstable focus occurs on a curve which is
a locus of points in the a-b plane where a ‘Hopf bifurcation’ occurs i.e. the fixed point for those
values of (a, b) is a center. The curve is given by 2a =

√
1 + 8b2 − (1+ 2b2) and is shown in Fig.

2. We shift the origin to the fixed point and use the new coordinates X, Y given by X = b− x
and Y = b

a+b2
− y. To use perturbation theory, we chose (a, b) close to the boundary. Setting

b =
√

3/8 (the turning point of the curve), we take a = 1/8 − δ to consider a point inside the
boundary but close to it. Clearly, δ is small and positive. To O(δ), the equation of motion reads

Ẋ =
1

2
(X + Y ) +N (X,Y ), (44)

Ẏ = −3

2
X − Y

2
−N (X,Y ), (45)

where

N (X,Y ) = δ(3X − Y ) +

√
3

8
X(X + Y ) +X2Y. (46)

N has to be expanded in amplitude and the parameter δ. On solving the above equation we
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Figure 3. Limit cycle in glycolytic oscillator for a = 0.124, b =
√
0.375 and δ = 0.001.

find the amplitude flow,
dA

dτ
= 2δA− 3A3

8
+O(δ2). (47)

Thus the amplitude emerges to go as δ1/2 for small δ. The frequency changes from the zeroth
order value of 1√

2
according to the flow

dθ

dτ
= − δ√

2
+

A2

4
√
2
+O(δ2). (48)

The stable fixed point A2 = 16δ/3 gives us the size of the limit cycle for δ � 1. A typical
small-δ orbit obtained numerically, is shown in Fig. 3 which bears out the correctness of the
above flow.

3.5. Advantage over linear stability analysis
Lets reconsider the glycolytic oscillator given by eqs. (42) and (43). As discussed earlier
according to linear stability analysis we have a loci of Hopf bifurcation points on the solid
curve in Fig. 2. So for parameter values corresponding to the ones on the curve (e.g. a = 1/8,
b =

√
3/8), we are supposed to have a center (periodic solution). But a simple numerical check

establishes otherwise; it turns out for parameter values on the curve the solution is actually a
focus. It is well known that linear stability analysis can predict wrongly the existence of a center
[12] when the fixed point in question is actually a focus. However our RG method can clearly
distinguish between an attractor and a center. If one looks at the amplitude flow equation (47),
we notice for δ = 0 it reduces to,

dA

dτ
= −3A3

8
. (49)

Which according to our prescription suggests that the fixed point in question is an stable
attractor and not an center. So we see that the linearized version of a nonlinear dynamical
system may not reproduce qualitatively correct picture of the phase portrait near a fixed point
because due to the linearization, the fixed point is shielded from full bombardment of the non-
linear terms. On the other hand RG manages to capture the true nature of the fixed point.
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3.6. Non-autonomous system
The RG technique can also be used to deal with non-autonomous systems. A very simple
example (f(x, ẋ) = 0 and F 6= 0 in Eq.(8)) will suffice to show how. We consider a damped
driven oscillator given by,

ẍ+ ω2x+ kẋ = F cosΩt, (50)

which we rewrite as,

ẍ+Ω2x = −kẋ+ F cosΩt+ (Ω2 − ω2)x. (51)

We treat k, F and Ω2 − ω2 as small to perturb about a center (k = F = Ω2 − ω2 = 0 ).
Proceeding as explained earlier, to the first order in all these small parameters, we obtain:

dA

dτ
= −kA

2
− F sinΘ

2Ω
(52)

dΘ

dτ
= −F cosΘ

2ΩA
+∆ω, (53)

where ∆ω ≡ ω−Ω. Since we are dealing with a forced oscillator, i.e. Ω is maintained externally,
it cannot change, implying dΘ/dτ = 0. Also, existence of a periodic solution requires that
dA/dτ = 0. Therefore, setting both Eqs. (52) and (53) to zero and solving we find that the
fixed point corresponds to the amplitude A = f/[k2+4(∆ω)2]1/2 (where f = F/Ω) and the phase
θ = tan−1[−k/2(∆ω)]. This is exactly in accordance with the literature of forced oscillators.
The stable non-zero fixed point in the evolution of A corresponds to a limit cycle in accordance
with what we have claimed has to happen. So in case of non-autonomous systems one needs to
set both the flow equations to zero and solve for the fixed points in order to extract information
about the periodic solution. This process can also be repeated for cases when f(x, ẋ) 6= 0 and
obtain the correct results.

3.7. Oscillator without any linear terms
As we have pointed out earlier in this article, for the RG method to work one needs to find
a linear center (a basic periodic state) about which to perturb. We have also showed that in
a few cases if initially there isn’t a linear center in the problem one can suitably expand the
parameter space or introduce new parameters to create one. But now we ask the question
what if the dynamical system does not have a linear part nor is it amenable for parameter
expansion via which one can locate a center. For example consider the oscillator: ẍ + λx3 = 0
or ẍ+βλxẋ+λ2x3 = 0. Such cases can’t be handled by the prescription we have laid down here
nevertheless a little tweaking of the method can handle a class of such problems. To illustrate
our point lets consider the so called Riccati equation given by,

ẍ+ βλxẋ+ λ2x3 = 0. (54)

The trick we use here is motivated from the so called “equivalent linearization” method of
nonlinear dynamics. We rewrite the above equation as,

ẍ+ βλxẋ+ λ2α〈x2〉x+ λ2
(
x3 − α〈x2〉x

)
= 0

or ẍ+Ω2x = −βλxẋ− λ2
(
x3 − α〈x2〉x

)
(55)

where 〈x2〉 is the average of x(t)2 over a cycle. In the above equation α is a constant number
which we need to find out. If we ignore the term in parenthesis, we have an equivalent linear
oscillator with frequency

Ω2 = αλ〈x2〉. (56)
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So now we have a linear system about which to perturb and we can carry out the normal RG
calculation. A detailed account of the problem and calculations can be found in the reference
[13]. The RG calculation yields the flow equations,

dA

dτ
= 0, (57)

dθ

dτ
= λ

(
3

4
− α

2
− β2

12

)
A2

2Ω
. (58)

And the above flow equations correctly predict the salient features of this oscillator [13].

4. Conclusion
In concluding we must revisit the method described here and discuss some of its merits and
demerits. We have shown here that the RG method can handle a wide variety of nonlinear
dynamical problems in 2-dimensions. It can further differentiate between different kinds of
periodic solutions, namely centers and limit cycles. Further where as linear stability analysis
fails to distinguish between an attractor and a center in a few cases our RG method successfully
distinguishes the two. The major advantage of RG however is the fact that it does not require
any apriori ad hoc assumptions like the other singular perturbation techniques. It starts with a
simple perturbative expansion assuming only the existence of a small parameter in the problem
and is able to capture various features of the dynamics. For example the multiple scales involved
in a dynamics need not be pre-identified as is done in multiple scale analysis rather the scales
appear naturally in the RG calculation.
However being perturbative this method has its limitations. As we have already discussed, for
a given 2-D system, application of RG depends on our ability to identify a suitable linear center
(periodic state) about which to perturb. While in many cases identifying a linear center is
straightforward, there are situations where one needs to employ certain tricks to do so. We
have discussed here a few ways in which one can identify a linear center in the problem. But if
in a problem one is not able to identify such a basic periodic state about which to perturb we
can’t proceed with the RG prescription. Nevertheless a wide range of dynamical problems can
be handled with our prescription. And it has been our intention here to illustrate our method
in a manner so that people from various disciplines may find it useful while analyzing periodic
solution in two dimensions.
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