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Abstract. Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit
visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels.
When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of
contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian
fluids, where the area increases monotonically in a similar situation. The periphery moreover,
develops an instability, which looks similar to Saffman Taylor fingers. This is not normally
seen under compression. The loading history is also found to affect the manner of spreading.
We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model
incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory
variation in the surface strain.

1. Introduction

Static and dynamic aspects of wetting and spreading are well studied classical text book
problems. However, forced spreading of a fluid under an impressed load is not widely discussed,
though the physics involved is challenging and the problem has important applications in
technology as well. In real life many fluids are non-Newtonian, adding further complexity to the
problem. General reviews concerning related problems are available [1, 2, 3], but there is scope
for more experimental and analytical studies.

In the present work we report studies on spreading of non-Newtonian fluids between two glass
plates, when the upper plate is loaded by a weight. We vary the weights, the fluids and the
manner of loading.

We observe an interesting oscillation in the area of contact between the fluid and glass plate
as a function of time. Earlier study of Newtonian fluids [3, 4] did not show such behavior.
Based on the experimental results we try to explain this phenomenon using fractional calculus,
which is known to be an appropriate technique to study non-Newtonian, visco-elastic materials
[5, 6, 7]. Another remarkable observation is the appearance of a surface instability similar to
viscous fingering. Viscous fingering under the condition of lifting, i.e. separating the plates is a
well studied phenomenon [8, 9, 10]. In this case the pressure is lower within the fluid, compared
to the air pressure outside, satisfying the Saffman-Taylor condition for instability [11]. However,
in the present case the fingering develops during compression.
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2. Materials and Methods

2.1. Materials
The fluids under study are two non-Newtonian fluids - arrowroot and potato starch gel and a
Newtonian fluid ethylene glycol (GR) is also studied for comparison.

Starch granules suspended in water produce a whitish liquid. When heated, the granules of
starch, which contain amylose and amylopectin, absorb water and swell up. Finally the starch
grain collapses and long chained amylose molecules are leached out. The long chains join to
form an amorphous mass with the water trapped inside. This is the gel phase. In the gel phase
there are no granules with boundaries that scatter light, so it looks clear.

In order to get a homogenous gel of the starch in water the suspension has to be heated to
temperature (> 100 ◦C). A preliminary set of experiments was done with arrowroot starch (Indo
Moulders, India) available commercially for stiffening fabrics. 2.5gm of the starch is dissolved
in 100ml of distilled water and it is heated up for 20 minutes and boiled for 2 minutes to get a
clear gel. A pinch of dye is added to enhance the contrast and the solution is allowed to cool.
Continuous stirring is necessary so that lumps are not formed and a smooth homogenous fluid
is obtained.

The second set of experiments was done on a well characterized sample of potato starch
((C6H10O5)m) manufactured by Lobachemie Pvt. Ltd. (Mumbai), the procedure for preparing
the gel is the same above but it has to be heated for 10 minutes. During heating and boiling,
some water is lost due to evaporation. The ratio water:potato starch (w/w) changes from 40:1
before boiling to 35:1 after boiling and cooling.

The Newtonian fluid that we use is ethylene glycol GR,(E.Merck, India). Here also a little
food colouring is added for enhancing contrast.

2.2. Methods
A droplet of the non-Newtonian fluid is placed on a smooth glass plate using a micro-pipette.
The mass of the droplet varies from 0.04 gm to 0.06 gm.

The fluid drop is compressed by two different loading processes.

(i) A load of W kg. is placed on another glass plate (identical to the bottom plate and weighing
570 gm).Then the plate and load are placed together on the drop.

(ii) The upper glass plate is first placed on the droplet. Then the weight W is placed on top of
the upper plate after an interval of 2 seconds.

Each of the non-Newtonian fluids is subjected to the two loading processes described above.
Ethylene glycol is compressed by the second process. The change in area of contact between
the fluid and plate is video recorded from below. The area is measured using Image Pro Plus
software and plotted as a function of time.

3. Experimental Observations

The strain is defined as the fractional change in area per unit area at t = 0.

ε(t) =
a(t) − a0

a0
(1)

a(t) and a0 being respectively the area at time t and at the initial time t = 0. Time t = 0 is taken
differently for the different loading processes. The results for the different sets of experiments
are described below.
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Figure 1. Variation in strain with time for arrowroot gel on glass, loaded by W 1 tp 5 kg by process (i) (black
right triangle - 1 kg, red cross - 2 kg, green up triangle - 3 kg, blue square - 4 kg, magenta square - 5 kg) . The
inset shows the erratic variations magnified for 4 and 5 kg respectively.

3.1. Set (A) - Arrowroot gel
• Loading process (i) Here the initial time is the instant when the total load - (plate + W)

is placed in position. The variation in strain for the arrowroot gel is shown in figure(1) for
different weights W . The area shows erratic noisy oscillations, more prominently displayed
in the magnified inset.

• Loading process (ii) Here the initial time t = 0 refers to the instant when the weight W is
placed, the upper plate already being in position. Figure(2) shows the variation in strain.
Here the variation is less erratic, but all sets show that the area initially overshoots the
final equilibrium value ε∞, then approaches ε∞ after one or two cycles of oscillation.
In our experiments, the masses of the initial fluid drop for the different sets, could not be
made exactly equal. This leads to some error which makes the data for 1 and 2 kg, as well
as 3 and 4 kg appear very close to each other in figure(2).

This video is taken at 4 frames/sec. Though the oscillations are apparent, clearly, recording
at higher speed is required. Instead of proceeding with the commercial arrowroot sample, which
is not well characterized, we continued the experiments with potato starch.

3.2. Set (B) - Potato Starch gel
All the subsequent results show videos taken at 10 frames/sec.

• Loading process (i) Here again noisy variations, which may be superposed on oscillations
are seen in the results (figure(3)).

• Loading process (ii) In this case, the erratic noise is much reduced and clear oscillations are
observed in figure(4). The oscillations die down after a few cycles to the equilibrium value
ε∞. The amplitude of the oscillations increases with load W . The peak-to-peak differences
for the first cycles for each load, were measured as: 0.13 cm2 (2 kg.), 0.15 cm2 (3 kg.),
0.18 cm2 (4 kg.) and 0.27 cm2 (5 kg.). The average frequency over the first 3 cycles was
measured, but did not show a definite trend with load variation, the values ranging from
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Figure 2. Variation in area of contact with time for arrowroot gel on glass, loaded by W 1 tp 5 kg by process
(ii). Clear oscillations are seen, though not very sharp.

0.35 to 0.75 hz. For the load 5kg. however, all the measurements gave values close to 0.35
hz. There was a problem with the results for 1 kg. load and we have omited them in the
present paper. More careful repeated measurements will be performed in future to verify
all the observations.
The experiments are repeated for reproducibility and four such data sets for W = 5 kg are
shown in figure(5).

3.3. Set (C) - Ethylene glycol
Ethylene glycol has been studied earlier, together with other Newtonian fluids [3, 4]. We
have repeated the experiments, recording the video at 10 frames/sec and show the results
here(figure(6)) for comparison with the gels . Loading process (ii) is employed here. The
results are very clearly different from the previous sets for the non-Newtonian fluids. Here, the
area increases smoothly and saturates to the equilibrium value for all loads W .

The results show convincingly that these non-Newtonian fluids show an oscillatory spreading,
when compressed in a Hele-Shaw cell, unlike Newtonian fluids. It is to be noted that this is
not a simple stick slip behavior, where the strain (here this is equivalent to area) would always
increase, but in jumps. Here for the gels, the strain, i.e the area, actually decreases after a short
time interval during loading and again increases. To establish that the film does shrink and
expand in an oscillatory manner, we superpose two snapshots taken at an interval of 2 seconds,
and show their difference in figure(7). The weight on the upper plate is 5 kg. Here the outer
boundary corresponds to an instant of time earlier than the inner. So the oscillations in strain
are genuine and not due to measuremental error. Further, the corrugated appearance of the
boundary, demonstrates the Saffman-Taylor like instability developed.

In the subsequent sections we suggest a visco-elastic model to explain our experiments. At
present, we focus on the less noisy data for loading process (ii). Presumably, loading process
(i) needs a more complicated theory, because the weights are placed on the hemispherical drop
directly. So change in shape i.e. flattening of the drop as well as change in area are to be
considered in this case.

3.4. Fluid Characterization
It is well known that starch solutions are non-Newtonian [12, 13]. It is interesting that the
suspension in water made without heating is shear thickening [14], whereas the gel made by
boiling the solution is shear thinning.

Rheological studies of the arrowroot gel and potato starch gel, were done at Central Glass
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and Ceramic Research Institute(CGCRI, CSIR) by a Bohlin rotational Rheometer at 25◦C
temperature. No preshear was applied to the samples prior to measurement. Both gels show
strongly shear thinning nature of the fluids with a yield stress. The apparent viscosity of potato
starch gel is somewhat smaller than arrowroot for all strain rates.

A log-log plot of strain against shear rate shows a power law relation for both fluids over
a wide range (figure(8)). An exponent 1.7 is obtained for arrowroot, while 1.5 is obtained for
potato starch, as shown in the best fit power-law straight lines shown in figure(8).

The graphs indicate a non-zero yield stress, but the value of the yield stress was not measured
precisely in the present set of experiments.
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Figure 3. Variation in strain with time for potato starch gel on glass, loaded by W 1 tp 5 kg by process (i).
The insets on the right and left show the erratic variations magnified for 4 and 5 kg respectively.

4. Mathematical Modeling

To analyze the stress-strain behavior we use a basic Kelvin-Voigt model [15, 16] of a spring and
dash pot in parallel as a basic unit. The viscous behavior is represented by the dash pot and
the elastic nature by the spring. The model is further generalized by taking the qth derivative
of the strain, thus introducing non-Newtonian rheology through fractional calculus[5, 17]. Here
q may be a fraction, for case q = 1 we have a Newtonian viscosity. The elastic term is assumed
to be Hookean at present. The stress is then given by

σ(t) = βτ q dqε

dtq
+ Eε (2)

Here ε is the strain, E the elastic modulus and β a parameter characterizing the effective viscosity
of the non-Newtonian fluid and τ a characteristic time of the system.

We assume a step function to represent the loading

σ(t) = σ for t ≥ 0, and σ(t) = 0 for t < 0
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. The initial condition for strain is ε(t) = 0 for t < 0.
The Laplace transform of equation(2) gives

ε(s) =
σ

E

[

1

s
−

sq−1

sq + E/β

]

(3)

The inverse Laplace transform of equation(3) gives

ε(t/τ) =
σ

E

[

1 − MLq

(

−
E

β
(t/τ)q

)]

(4)

where, ML(−kt) is the one parameter Mittag-Leffler function defined by

ML1(−kt) = e−kt

MLq(z) =

∞
∑

k=0

zk

Γ(qk + 1)

Visco-elastic systems typically have a ‘memory’, the strain at time t is determined by its
previous loading history starting from t = −∞. The Markovian system withour memory is a
special case of general non-Markovian systems exhibiting correlation or anti-correlation. The
general case can be treated naturally using generalized calculus methods, as follows.

One has to consider the Green’s function for a general relaxation in equation(2), so we write
the homogeneous equation with RHS equal to zero. The strain built up for any relaxation, as
a function of a scaled dimensionless time tr. may be treated as convolution integral of a strain
variable with integral kernel Kq(t), as [6, 7]. We use henceforth this reduced dimensionless time
tr, which is the time scaled by some characteristic time of the sytem.

d

dtr
ε(tr) = −

∫ tr

0

Kq(tr − t)ε(t)dt (5)

We first consider two special cases, with no memory and infinite memory.

4.1. No memory
If the memory kernel is K(tr) = B0δ(tr), we have the above system 2 without memory [6, 7]
and the Green’s function will be

ε(tr) = ε0e
−B0tr

that is the impulse response quickly decays to zero. Here ε0 is initial strain of the system at
tr = 0.

This can be derived as follows:

K(tr) = B0δ(tr) (6)

d

dtr
ε(tr) = −

∫ tr

0
δ(t − tr)ε(t)dt = −B0ε(tr) (7)
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Figure 4. Variation in area of contact for potato starch on glass, loaded by W = 2,3,4 and 5 kg by process
(ii). The curves are shifted along the y-axis with respect to each other for clarity. The inset shows the results for
2 and 5 kg. only, without the shift. Amplitude of the oscillations increases with load.

ε(tr) = ε0e
−B0tr (8)

The homogeneous strain relaxation equation for no-memory case is a first order Ordinary
Differential Equation i.e.

d

dtr
ε(tr) + B0ε(tr) = 0 (9)

4.2. Infinite memory
If the memory kernel is a constant say K2(tr) = B2, then we will have oscillatory Green’s
function, which never decays to zero .

d2

dt2r
ε(t) = −B2ε(tr) (10)

ε(tr) = ε0cos(
√

B2tr) (11)

4.3. Generalized case
If a generalized memory integral of the following form is taken

K(t) = Bqt
q−2
r ; 0 < q ≤ 2 (12)

one has
d

dtr
ε(tr) = −

1

αq

[

d(1−q)

dt(1−q)
ε(tr)

]

(13)

where,

αq =
[

BqΓ(q − 1)
]

−1
(14)
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Integrating the equation(13), we have

ε(tr) − ε0 = −
1

αq

[

d(−q)

dt(−q)
ε(tr)

]

(15)

Differentiating this to order q, we get the corresponding generalized differential equation.

dqε(t)

dtq
− ε0

t−q

Γ(1 − q)
= −α−qε(t) (16)

using the fact that the differentigral of order q of the constant ε0 gives ε0
t−q

Γ(1−q) .

This is the equation for the system with the memory index entering as fractional order q of
the Fractional Differential Equation with, 0 < q ≤ 2.

q = 1 corresponds to no memory and q = 2 corresponds to infinite memory with anti-
correlation, or anti-persistence.

In equation(16) above, if the initial stress be ε0 , assuming Heaviside’s step function as the
stress input, it modifies to equation(2), for α−q → B.
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Figure 5. Four separate experiments (a) - (d) performed identically (by process 2), show the
reproducibility of the nature of oscillations for potato starch gel loaded by 5 kg.

The non-Newtonian fluids without oscillatory behavior will have 0 < q < 1, which leads to an
equation also of fractional order, and the step-response will have monotonically increasing strain
response, given by one argument Mittag-Leffler function. Its impulse response will be a function
having a long tailed decay. In other words, the response will have long-range temporal correlation
i.e. persistence. In equation(13) q = 0, 1 and 2 represent cases with respectively memory with
complete correlation, no memory and memory with complete anti-correlation. These situations
are analogous to a random walk with persistent memory, no memory and anti-persistent memory
repectively.

The visco-elastic system with Newtonian viscous behavior can be modeled with a discrete
ideal spring and a ideal dashpot. Whereas the more complicated case with non-Newtonian
viscosity requires a different representation like a fractal chain of the ideal spring and ideal
dashpot combination, or equivalently, a description using generalized calculus [5]. Our
experiment clearly shows oscillatory strain and thus we infer the fractional order q of our system
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Figure 6. Variation of strain in time for ethylene glycol loaded by different W by process (ii).
The inset shows that the increase is monotonic even on magnification.

to lie between 1 and 2. Neccessity for the use of a non-trivial memory kernel clearly demonstrates
that results for strain at t should depend on earlier loading history, rather than the instantaneous
load at t.

5. Results from the Model

We now plot the strain as a function of time using equation(4). For q = 1, the strain increases
smoothly and saturates to the value ε∞ = σ/E, σ represents the load W in our experiment. For
q < 1, a similar behavior is observed, with a slower variation in strain. For q > 1 however, we
see an initial increase in strain overshooting ε∞ followed by oscillations before saturating to ε∞.
The oscillations are more pronounced as q increases. These results are shown in figure(9). The
amplitude depends on q and of course the magnitude of the strain changes proportionately to
the load σ, also affecting the amplitude of oscillation.

Considering the parameter B = E
β

to represent the relative strengths of the elastic and

viscous terms in equation(2), we may see how the system responds to changes in B. We find
that variation of B changes the time period of the oscillations in strain, without affecting the
amplitude. Variation of strain with W and B are shown in figure(10). The time period is smaller
when elasticity dominates.

If we assume that the fractional change in area is equivalent to the strain in the system, the
results for the starch solutions are reproduced qualitatively by the visco-elastic model with non-
Newtonian rheology. Here the qth order derivative takes care of the non-linearity in the complex
fluid. In the earlier paper [3] the Newtonian fluids were assumed incompressible and the change
in film thickness was calculated from the constant volume of the fluid. Here the fluid may have
a finite compressibility, so we refer only to the area which is measured directly. Determination
of the exact value of q for our systems requires a more detailed analysis, with more information
on the rheological properties. From the present study we may say q lies between approximately
1.5 and 1.8, because we observe 3 oscillation cyles. A value of q less than 1.5 would give less
cycles, while q larger than 1.8 would give more. However, it is quite clear that q is not 1, i.e.
the viscous contribution to the model is not Newtonian.
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Figure 7. The figure shows the difference between two outlines of the blob of potato starch gel on glass, when
compressed by a 5 kg. weight. The outer contour is of a snap taken 2 seconds earlier than the inner. This shows
clearly that the compressed drop shrinks before increasing again,

6. Conclusion

To conclude, this work demonstrates the interesting phenomenon of oscillatory spreading of
starch solutions on glass and illustrates how the approach of generalized calculus may be used
to analyze it. The qualitative agreement of the variation in strain with time from the experiments
and the theory is encouraging and further exploration along these lines promises to be rewarding.
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Figure 8. A double logarithmic plot of strain rate versus stress for arrowroot gel and potato starch gel, show
that in both cases the fluids follow a power-law over a wide range. The straight lines are best power-law fits with
exponents of 1.7 and 1.5 for arrowroot and potato starch respectively.

Continuum Models and Discrete Systems Symposia (CMDS-12) IOP Publishing
Journal of Physics: Conference Series 319 (2011) 012006 doi:10.1088/1742-6596/319/1/012006

10



0 10 20
Time

0

0.5

1

1.5

2

St
ra

in

q = 0.5
q = 1.0
q = 1.4
q = 1.7

Figure 9. Variation in strain with time for different values of q from equation(4). An oscillatory behavior is
seen, which dies down to the equilibrium value.

0 10 20
Time

0

1

2

3

St
ra

in

W = 1 unit
W = 2 units
W = 4 units

(a)

0 10 20
Time

0

1

2

St
ra

in

B = 0.5
B = 1.0
B = 1.5

(b)

Figure 10. Variation in strain with time for different values of W and different values of B from equation(4).
q = 1.7 in all cases.

Acknowledgments

Tapati Dutta and Prof. S.P. Moulik are gratefully acknowledged for helpful discussion. The
authors thank UGC, Govt. of India for supporting this work and for providing a research grant
to MDC.

References
[1] Engmann J, Servais C, Burbridge A S 2005 J. Non-Newt. Fluid Mech. 132 1
[2] Bonn D, Eggers J, Meunier J, Rolley E, 2009 Rev. Mod. Phys 81 739
[3] Nag S, Dutta T, Tarafdar S, 2011 J. Colloid Int. Sci. 356 293
[4] Nag S, Dutta S, Tarafdar S, 2009 Applied Surface Science 256 353
[5] Heymans N, Bauwens J C, 1994 Rheologica Acta 33 210

Continuum Models and Discrete Systems Symposia (CMDS-12) IOP Publishing
Journal of Physics: Conference Series 319 (2011) 012006 doi:10.1088/1742-6596/319/1/012006

11



[6] Das S, 2010 Mathematico-Physics of Generalized Calculus Limited edition, available at Jadavpur University
and University of Calcutta

[7] Das S, 2007 Functional Fractional Calculus for System Identification and Controls Berlin:Springer-Verlag

[8] Sinha S, Dutta T and Tarafdar S, 2008 Eur. Phys. J. E 25 267
[9] Ben Amar M and Bonn D, 2005 Physica D 209, 1

[10] Poivet S, Nallet F, Gay C and Fabre P, 2003 Europhys. Lett. 62 244
[11] Vicsek T, 1989 Fractal Growth Phenomena (Singapore: World Scientific)
[12] Moorthy S N, Larsson H and Eliasson A C, 2008 Starch/Starke 60 233
[13] Singh J, Singh N, Saxena S K, 2002, J. Food Eng. 52, 9
[14] Fall A, Huang N, Bertrand F, Ovarlez G. and Bonn D., 2008 Phys. Rev. Lett.100 018301
[15] Christensen R M, 2003 Theory of Viscoelasticity, 2nd ed. New York: Dover

[16] Bland D R, 1960 The Theory of Linear Viscoelasticity London: Pergamon Press

[17] Glockle W G and Nonnenmacher T F, 1991 Macromolecules 24 6426

Continuum Models and Discrete Systems Symposia (CMDS-12) IOP Publishing
Journal of Physics: Conference Series 319 (2011) 012006 doi:10.1088/1742-6596/319/1/012006

12




