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Parallel algorithms for finding cliques in a graph

S Szabó

Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6. 7624 Pécs,
HUNGARY

E-mail: sszabo7@hotmail.com

Abstract. A clique is a subgraph in a graph that is complete in the sense that each two of its
nodes are connected by an edge. Finding cliques in a given graph is an important procedure in
discrete mathematical modeling. The paper will show how concepts such as splitting partitions,
quasi coloring, node and edge dominance are related to clique search problems. In particular we
will discuss the connection with parallel clique search algorithms. These concepts also suggest
practical guide lines to inspect a given graph before starting a large scale search.

1. Introduction
In a naive but intuitive level a graph is simply a collection of points on the plane some of which
are connected by an arc while others are not. In this paper we do not need a more sophisticated
graph concept. The points are called nodes or vertices invariably. The arcs are termed edges.
If two nodes are connected by an edge, then we may express this fact by saying that the nodes
are adjacent or neighbors of each other. The graphs we use will have finitely many points. A
node is never connected to itself, that is, the graphs do not admit loops. Two distinct nodes are
connected with one edge or not connected at all. In other words, the graphs do not have double
edges.

Let Γ be a graph. The set of vertices of Γ is denoted by V . Suppose U is a subset of V . If
each two distinct points of U are always connected by an edge of Γ , then we have a subgraph ∆
of Γ that is called a clique. The set of vertices of ∆ is U . If U has k elements we say that ∆ is a
clique of size k or simply that ∆ is a k-clique in Γ . When U is the empty set, then although the
graph ∆ does not have any nodes or edges, by definition ∆ is considered to be a clique of size
zero. When U contains one single node of Γ , then by definition ∆ considered to be a clique of
size one. A clique ∆ in Γ is called maximal if it cannot be extended to a larger clique by adding
a further point of Γ . Maximal cliques do not make any appearance in this paper. We mention
them just to contrast them to the concept of maximum cliques we define next. A clique ∆ in Γ
is a maximum clique in Γ if the size of ∆ is the largest possible among the cliques in Γ .

It is an empirical fact that finding cliques in graphs can be used in mathematical modeling
very much in the same fashion as say solving differential equations. In the course of modeling
the graphs are man made objects designed cleverly to express pertinent aspects of the problem
in the same spirit as one sets up differential equations. We resist the temptation to detail these
problems for it would lead off from our main track. The interested reader may find applications
in [1], [2], [3], [4], [5], [6], [7], [8]. The clique search problems of course must be labeled and
categorized. Otherwise they could not be used systematically.
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Problem 1 Given a graph Γ and a positive integer k. Decide if Γ has a clique of size k.

Problem 2 Given a graph Γ and a positive integer k. List all k-cliques in Γ .

Problem 1 is called the decision version of the k-clique search problem. Problem 2 is called
the listing version or generation version of the k-clique search problem. There are analogous
problems to list all maximum cliques in a given graph or exhibit one maximum clique or simply
just find the size of the maximum cliques.

By the theory of the complexity of computations, Problem 1 is an NP complete problem.
(The acronym “NP” stands for “nondeterministic polynomial”.) Loosely speaking the theory
predicts that in this family of clique search problems some hard instances are lurking. The
theory does not predict where these instances are located.

There are algorithms and well tested programs for solving these problems. (See for example
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18].) Parallel programs are also available. (see
for instance [19].) In this paper we propose further parallel algorithms. We divide the original
problem to smaller problems that can be processed independently. To achieve a reasonable load
balancing we try to choose many times more subproblems than processors are available and try
to choose subproblems of similar sizes hoping that their running times do not vary too widely.

On the practical side if someone has to carry out a clique search in a hurry, then please use
well tested existing programs. (The author does the same.) However, before embarking on a
large scale clique search it is advisable to carry out a thorough inspection of the original graph to
detect deletable nodes and edges. In the paper we present results relevant to such an inspection
and we do recommend using these ideas.

Section 2 describes a parallel algorithm based on splitting partitions. Section 3 provides us
with a way to construct splitting partitions using biclique search in a bipartite graph. Section 4
contains two extensions of the coloring idea the triangle free partitions and a new type of edge
coloring to estimate the clique size in a graph. The second parallel algorithm is presented in
Section 5 and it relies on quasi-coloring of the graph. Section 6 and Section 7 are devoted to the
same theme dominance relation defined on nodes and edges to spot nodes and edges that are
redundant during clique searches. Finally, Section 8 shows how normal partitions can be used
for a parallel clique search.

2. Splitting partitions
Let Γ be a graph and let C1, C2, C3 be a partition of the vertex set V of Γ .

Definition 1 We say that the partition C1, C2, C3 is a splitting partition of Γ if C1 6= ∅, C3 6= ∅
and if there is no edge of Γ whose one end point is in C1 and the other end point is in C3.

For a splitting partition C1, C2, C3 of Γ we define two subgraphs Γ1, Γ3 of Γ . Let Γ1 be the
subgraph of Γ spanned by the vertex set C2 ∪C3. Let Γ3 be the subgraph of Γ spanned by the
vertex set C1 ∪ C2.

Proposition 1 If ∆ is a clique of Γ , then either ∆ is a clique in Γ1 or ∆ is a clique in Γ3.

Proof. Assume on the contrary that ∆ is neither a clique in Γ1 nor is a clique in Γ3. As ∆ is
not a clique in Γ1, there is a node a of ∆ such that a ∈ C1. As ∆ is not a clique in Γ3, there is
a node b of ∆ such that b ∈ C3. The facts that ∆ is a clique in Γ and a, b are nodes of ∆ give
that {a, b} is an edge of ∆ and so it is an edge of Γ . This violates that the partition C1, C2, C3

is a splitting partition of Γ . �

A word of warning. Proposition 1 does not imply that if ∆ is a clique in Γ , then ∆ is a clique
only in one of Γ1 or Γ3. In fact ∆ can be a clique in both Γ1 and Γ3. Therefore when one lists
all maximum cliques (or k-cliques) in Γ1 and Γ3 one may meet a given clique in Γ twice.
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Let a be a node of Γ . We say that a has full degree in Γ if a is adjacent to each point of Γ
distinct from a.

Proposition 2 Let C1, C2, C3 be a splitting partition of Γ . If there is node in C1 which is full
degree in Γ1 or there is a node in C3 which is full degree in Γ3, then a maximum clique in Γ
cannot be a clique in both of Γ1 and Γ3.

Proof. For the sake of definiteness assume that there is a node a ∈ C1 which is full degree in
Γ1. Let ∆ be a maximum clique in Γ and assume on the contrary that ∆ is a clique in Γ1 and
Γ3. Then ∆ is a clique in the subgraph Γ ′ of Γ spanned by C2. Note that a is not a node of ∆
and ∆ ∪ {a} is a clique in Γ . Thus ∆ cannot be a maximum clique in Γ . �

If C1, C2, C3 is a partition of the set of nodes of Γ , then after rearranging rows and columns,
the adjacency matrix M of Γ can be written in the form M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

 .
The block Mi,j is a |Ci| by |Cj | matrix. Here |Ci| stands for the number of the elements of the
subset Ci. If the partition C1, C2, C3 is a splitting partition, then each entry of M1,3 and M3,1

is zero. The adjacency matrices of Γ1 and Γ3 are[
M2,2 M2,3

M3,2 M3,3

]
,

[
M1,1 M1,2

M2,1 M2,2

]
respectively. In Proposition 1 we may choose the clique ∆ to be a maximum clique and we get
that finding a maximum clique in Γ can be reduced to finding a maximum clique in two smaller
graphs Γ1 and Γ3.

Let ρ = min{|C1|, |C2|}. The larger is ρ the larger is the reductive power of the splitting
partition. The reason for this is that the number of vertices of the larger of the graphs Γ1 and
Γ3 is equal to

max{|C2|+ |C3|, |C1|+ |C2|} = max{|V | − |C1|, |V | − |C3|} = |V | − ρ.

As a consequence we try to choose splitting partitions for which ρ is as large as possible.

Problem 3 Given a graph Γ construct a C1, C2, C3 splitting partition with possibly large value
of ρ.

There is a rather trivial way to construct splitting partitions for which ρ = 1. Suppose that
a is a node of Γ such that a has at least one non-neighbor in Γ . The set of neighbors of a in Γ
we will denote by N(a). Set

C1 = {a}, C2 = N(a), C3 = V \N(a).

Then C1, C2, C3 is a splitting partition of Γ with ρ = 1.
Next we describe a greedy algorithm to try to construct splitting partition with ρ ≥ 2. We

introduce three lists L1, L2, L3.

(1) Initially set L1 = ∅, L2 = ∅, L3 = V .

(2) Pick an a ∈ L2 ∪ L3. Let La be the set of all the neighbors of a in L3. (La = L3 ∩N(a).)
We choose such an a that minimizes |La|.
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(3) If |L3|−|La|−1 ≥ |L1|+1, then set L1 = L1∪{a}, L2 = (L2∪La)\{a}, L3 = L3\ [La∪{a}]
and continue at step (2).

(4) If |L3| − |La| − 1 < |L1|+ 1, then stop.

After the procedure stops set

C1 = L1, C2 = L2, C3 = L3.

If C1 6= ∅ and C3 6= ∅, then the partition C1, C2, C3 is a splitting partition of Γ . It may or may
not happen that ρ ≥ 2. If for each vertex a in Γ there is exactly one node b such that {a, b}
is not an edge of Γ , then the algorithm ends up with a splitting partition with ρ = 1. If each
node of Γ has full degree in Γ , that is if Γ itself is a clique, then the output of this algorithm
is identical to the initial values and the algorithm does not produce a splitting partition in this
case.

A possible parallel maximum clique (or k-clique) algorithm is now the following. Let us start
with the graph Γ . The greedy algorithm provides us with a splitting partition. If the reducing
factor ρ ≥ 2, then we replace Γ by the smaller graphs Γ1 and Γ3. We repeat this procedure with
Γ1 and Γ3. If the reducing factor ρ is no longer larger than one, then we do not try to split the
graph into smaller ones. We end up with a long list of graphs Γ ′1, . . . ,Γ

′
s instead of Γ . The new

graphs are smaller than the original graph Γ . These graphs then can be processed independently
of each other. The independent processes can use any serial clique search algorithm.

3. Bipartite graphs and bicliques
We now turn to a more systematic non-greedy way to construct splitting partitions. For this we
need bipartite graphs and bicliques in bipartite graphs. A graph Λ is called a bipartite graph if
the vertex set of Λ can be partitioned into two subsets V1, V2 such that Λ has no edge whose
end points are in V1 and Λ has no edge whose end points are in V2. We will talk about bicliques
in bipartite graphs. Let Λ be a bipartite graph whose vertex set is partitioned into V1, V2. Let
U1 ⊆ V1, U2 ⊆ V2. If each vertex of U1 is adjacent to each vertex of U2, then the subgraph Ω
spanned by U1 ∪ U2 in Λ is called a biclique of Λ. The biclique Ω is called a (k1, k2)-biclique if
|U1| = k1, |U2| = k2. The next biclique search problem is relevant for us.

Problem 4 Given a bipartite graph Λ and given two integers k1, k2. Decide if Λ has a (k1, k2)-
biclique. If Λ does contain a (k1, k2)-biclique, then exhibit one.

There are algorithms to solve this problem in the literature. See for instance [20].
Let Γ be a graph. We define a bipartite graph Λ whose bicliques can be used to construct

splitting partitions of Γ . Let V be the vertex set of Γ and let M be the adjacency matrix of Γ .
Each entry in the main diagonal of M is zero. Replace each of these zeros by one to get a new
matrix M′. The rows and columns of M and M′ are labeled by the elements of V . The vertex
set of Λ is partitioned into V1, V2. We define V1, V2 by

V1 = {(v, 1) : v ∈ V }, V2 = {(v, 2) : v ∈ V }.

We connect the nodes (v, 1), (v′, 2) of Λ by an edge if the entry of M′ in the (v)-th row and
(v′)-th column is equal to zero.

Let ρ be a positive integer and suppose that the biclique search algorithm has found a (ρ, ρ)-
biclique Ω in Λ. The vertex set of Ω is partitioned into U1, U2. There are subsets C1, C3 of V
such that

U1 = {(u, 1) : u ∈ C1}, U2 = {(u, 2) : u ∈ C3}.

Proposition 3 If ρ ≥ 1, then the sets C1, C2 = V \ (C1 ∪C2), C3 form a splitting partition of
the graph Γ .
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Proof. Plainly ρ ≥ 1 implies that C1 6= ∅, C3 6= ∅. We need to prove that C1 ∩ C3 = ∅. This
will imply that C1, C2, C3 is a partition of V . Then we should prove that Γ has no edge {a, b}
with a ∈ C1, b ∈ C3.

In order to prove C1 ∩ C3 = ∅ assume on the contrary that there is an a ∈ C1, a ∈ C3. This
means that (a, 1) ∈ U1, (a, 2) ∈ U2. Since Ω is a biclique of Λ, the nodes (a, 1), (a, 2) of Λ are
adjacent. This gives that the entry in the (a)-th row and (a)-th column of M′ is zero. But the
main diagonal of M′ is filled with one. This contradiction verifies the claim that C1 ∩ C3 = ∅.

Next suppose that Γ has an edge {a, b} for which a ∈ C1, b ∈ C3. This means that (a, 1) ∈ U1,
(b, 1) ∈ U2. Since Ω is a biclique of Λ, the nodes (a, 1), (b, 1) of Λ are adjacent. So the entry of
M′ in the (a)-th row and (b)-th column is zero. On the other hand note that a 6= b as Γ has no
loops. Since {a, b} is an edge of Γ , the entry in the (a)-th row and (b)-th column in M is one.
Using that a 6= b, it follows that this entry is the same in M and M′. (M and M′ differ only at
the main diagonal.) This contradiction completes the proof. �

To illustrate the argument above we work out a small example in details. Let Γ be the
graph depicted in figure 1. The adjacency matrix of this Γ graph is given in table 1. Using the
adjacency matrix of Γ we construct the bipartite graph Λ. This Λ graph is depicted in figure 2.
An inspection shows that the subgraph Ω spanned by the subsets

U1 = {(4, 1), (5, 1)}, U2 = {(2, 2), (6, 2)}

form a (2, 2)-biclique of Λ. From the subsets U1, U2 one can read off that the sets

C1 = {4, 5}, C2 = {1, 3}, C3 = {2, 6}

form a splitting partition of Γ . One can see that the 2 by 2 block at the upper right corner
in the rearranged adjacency matrix of Γ is blank. As it supposed to be. The graph Γ can be
replaced by the smaller Γ1 and Γ3 graphs. We included figure 3 to exhibit these graphs.

4. Coloring
Coloring is a well studied subject in graph theory. (See for example [21].) First we quickly
glance over the basic concepts pertinent to clique search. Let Γ be a graph. We color the nodes
of Γ with t distinct colors. A coloring of the nodes is called a legal or well coloring if each node
is colored with one of the t colors and if adjacent nodes do not receive the same color.

Let Ci be the set of the nodes of Γ that are colored with the (i)-th color. The set Ci is termed
the (i)-th color class. The sets C1, . . . , Ct form a partition of the vertex set V of Γ . This means
that C1 ∪ · · · ∪ Ct = V and Ci ∩ Cj = ∅ for each i, j, 1 ≤ i < j ≤ t. Clearly, two distinct nodes
in Ci cannot be adjacent in Γ . We call a set Ci edge free if it does not contain edges from Γ . A
partition C1, . . . , Ct is called an edge free partition if each Ci is edge free.

In a legal coloring of Γ with t colors the color classes C1, . . . , Ct form an edge free partition
of V . Conversely, if C1, . . . , Ct is an edge free partition of V , then coloring the elements of Ci
with the (i)-th color we end up with a legal coloring of Γ .

The essential link between the coloring and the clique search is the following observation. Let
∆ be a clique of size k in Γ and let C1, . . . , Ct be the color classes of a well coloring of Γ . Each
color class can contain at most one node of ∆. From this it follows that k ≤ t. In other words,
if Γ admits a legal coloring with k − 1 colors, then Γ cannot contain a clique of size k.

Determining the least number of colors a graph can be well colored with is computationally
hard. (It is an NP complete problem.) However, there are various greedy algorithms to exhibit
if not optimal but still useful well colorings to provide upper bounds for the clique size can
appear in a given graph. We propose now two variants of the coloring idea to obtain further
upper bounds for the possible clique size.
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Figure 1. The Γ graph in the first example.

Table 1. The adjacency matrix of Γ in the first example and the rearranged adjacency matrix
of Γ .

1 2 3 4 5 6
1 × • • •
2 • × •
3 • × • •
4 • • × •
5 • • ×
6 • ×

4 5 1 3 2 6
4 × • • •
5 • × •
1 • • × •
3 • × • •
2 • • ×
6 • ×
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Figure 2. The bipartite graph Λ in the first example. A (2, 2)-biclique is highlighted.
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Figure 3. The graph Γ can be replaced by the smaller Γ1 and Γ3 graphs.
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Definition 2 A subset Ci of the vertex set V of the graph Γ is called triangle free if Ci does
not contain a triangle of Γ . A partition C1, . . . , Ct of V is called a triangle free partition if each
Ci is triangle free.

Proposition 4 Suppose the graph Γ admits a triangle free partition C1, . . . , Ct. Let ∆ be a
clique of size k in Γ . Then k ≤ 2t.

Proof. As C1 ∪ · · · ∪ Ct = V , each node of ∆ falls into one of the classes C1, . . . , Ct. Each Ci
can contain at most two nodes of ∆, since Ci does not contain any triangle of Γ . This implies
k ≤ 2t, as required. �

One can describe the triangle free partitions in terms of coloring the nodes of a hyper graph.
Recall that a 3-uniform hyper graph Ξ on the set of vertices V is a collection E of hyper edges,
where each hyper edge contains three distinct vertices from V . We color the nodes of Ξ using t
colors. We say that a coloring is a well coloring or a legal coloring if each node receives exactly
one color and if the three nodes of a hyper edge never receive the same color. Let Ci be the set
of nodes of Ξ colored with the (i)-th color. We call Ci the (i)-th color class of the coloring.

For a given graph Γ we define a 3-uniform hyper graph Ξ . The nodes of Ξ are the nodes of
Γ . Three distinct nodes a, b, c of V form a 3-hyper edge of Ξ if a, b, c are mutually adjacent in
Γ . Now the color classes C1, . . . , Ct of Ξ form a triangle free partition of Γ .

Problem 5 Given a graph Γ . Construct a triangle free partition of Γ with possibly few members
of the partition.

Here is a greedy algorithm for solving this problem. Suppose the vertex set V of Γ has n
nodes. We start with n + 1 lists L,L1, . . . , Ln. Set L = V , L1 = · · · = Ln = ∅. While L 6= ∅
repeat the following. Choose and a ∈ L. If for each edge {b, c} in Li, either {a, b} or {a, c} is
not an edge of Γ , then place a to Li. If a cannot be placed to Li, then try to place a to Li+1.

Numerical experiments indicate that greedily constructed triangle free partitions usually
provide better upper bounds than greedily constructed edge free partitions. However, this
improvement comes for a higher price we should pay in computational resources.

Instead of the nodes of Γ one may try to color the edges of Γ using t distinct colors. For such
coloring we single out certain edge colored subgraph of Γ and call these prohibited configurations.
Suppose that the edges {x, y}, {u, v} of Γ receive the same color. Since Γ does not have loops,
x 6= y and u 6= v. If the nodes x, y, u, v are all distinct and they are pair-wise adjacent, then
this configuration is prohibited. If two of the nodes x, y, u, v are identical, say y = u, and
the other two nodes x, v are adjacent, then this configuration is prohibited. The prohibited
configurations are depicted in figure 4.

Definition 3 We call a coloring of the edges of a graph Γ a legal edge coloring of Γ if each
edge is colored with one of the t colors and no prohibited configuration occurs.

Proposition 5 Suppose that the edges of Γ are legally colored using t colors. Let ∆ be a clique
of size k in Γ . Then k(k − 1) ≤ 2t.

Proof. Let Ci be the set of all the edges of Γ that are colored with the (i)-th color. We call
Ci the (i)-th color class of Γ . The sets C1, . . . , Ct form a partition of the edge set E of Γ since
each edge receives exactly one color. As C1 ∪ · · · ∪ Ct = E, each edge of ∆ falls into one of the
color classes. If two distinct edges of ∆ falls into the same color class, then this color class will
contain a prohibited configuration. By the definition of the legal coloring, Γ does not contain
any prohibited configuration. Consequently each color class contains at most one edge of ∆.
Since ∆ has (1/2)k(k − 1) edges, it follows that (1/2)k(k − 1) ≤ t, as required. �
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The edge coloring of Γ can be expressed in terms of coloring the nodes of a derived graph Θ .
The nodes of Θ are the edges of Γ . Temporarily we extend Γ to Γ ′ by connecting each node
of Γ to itself, that is, introducing loops into Γ . Two distinct edges {x, y}, {u, v} of Γ will be
adjacent nodes in Θ if the nodes x, y, u, v are mutually adjacent in Γ ′. Now a legal coloring of
the nodes of Θ results a legal coloring of the edges of Γ .

Problem 6 Given a graph Γ . Construct a legal coloring of edges of Γ with possibly few colors.

A straight forward greedy algorithm starts with two lists L = E and L1 = ∅, where E is the
edge set of Γ . In a typical situation there are s+ 1 lists L,L1, . . . , Ls. While L 6= ∅ repeat the
following. Choose an edge e of L1 and test if e can be placed to Li by checking if for each edge
f ∈ Li the edges e, f colored with the same color form a prohibited configuration. If e cannot
be placed to any of the lists L1, . . . , Ls, then open a new list Ls+1 for e. In either cases set
L = L \ {e}.

Alternatively one may start constructing a legal edge coloring of Γ with a legal node coloring
of Γ . Suppose C1, . . . , Cs are the color classes of a legal vertex coloring of Γ . We arrange the
situation such that |C1| ≤ · · · ≤ |Cs|. Choose an a ∈ Cs. If {a, b} is an edge of Γ such that
b ∈ Ci, then color the edge {a, b} with color i, that is, place {a, b} to the list Li. After repeating
this for each a ∈ Cs we get s− 1 lists L1, . . . , Ls−1. Set L = E \ (L1 ∪ · · · ∪ Ls−1) and start the
earlier algorithm with the initial lists L,L1, . . . , Ls−1.

Numerical experiments show that greedy edge colorings can provide tighter bounds than
greedy node colorings. But this improvement comes for higher computational price.

5. Quasi coloring
Let Γ be a graph with vertex set V and let C1, . . . , Ct be a partition of V . After rearranging
rows and columns the adjacency matrix M of Γ can be written in the form

M1,1 M1,2 . . . M1,t

M2,1 M2,2 . . . M2,t
...

...
. . .

...
Mt,1 Mt,2 . . . Mt,t

 ,
where the block Mi,j is a |Ci| times |Cj | matrix. The rows of Mi,j are labeled with the elements
of Ci and the columns of Mi,j are labeled by the elements Cj . The set Ci is called independent
in Γ if any two distinct vertices in Ci are not adjacent. If Ci is an independent set in Γ , then
each entry of the matrix Mi,i is zero, that is, Mi,i is a zero matrix. If each Mi,i is a zero matrix,
then each Ci is an independent set in Γ and so the nodes of Γ can be well colored with t colors.
The sets C1, . . . , Ct can be chosen to be color classes of the coloring. In a typical situation the
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Mi,i matrices are not necessarily zero matrices. Let 2σ be the overall number of the non-zero
entries in the Mi,i matrices. The closer is σ to zero, the closer is the partition C1, . . . , Ct to be
the color classes of a well coloring of Γ .

Definition 4 We will refer to a partition C1, . . . , Ct of the vertex set of Γ as a (σ, t)-quasi
coloring of Γ .

We propose a parallel k-clique search algorithm based on quasi colorings. Given a graph Γ
and a positive integer k. We would like to decide if Γ has a clique of size k. Suppose we have
a (σ, k − 1)-quasi coloring of Γ at our disposal. Let {a1, b1}, . . . , {aσ, bσ} be the edges of Γ
that correspond to the 2σ non-zero entries in the matrices M1,1, . . . ,Mk−1,k−1. Let Γi be the
subgraph of Γ spanned by the set N(ai) ∩N(bi).

Proposition 6 If Γ has a clique of size k, then at least one of the graphs Γ1, . . . ,Γσ has a
clique of size k − 2.

Proof. Assume on the contrary that Γi does not contain a clique of size k − 2 for each i,
1 ≤ i ≤ σ.

There is a clique of size k in Γ . Let ∆ be such a clique. If {a1, b1} is an edge of ∆, then
there is a clique ∆1 of size k − 2 in N(a1) ∩ N(b1). Hence ∆1 is a clique of size k − 2 in Γ1.
This contradicts the indirect assumption. Thus {a1, b1} is not an edge of any clique of size k in
Γ . This means that we may delete the edge {a1, b1} from Γ without disturbing the number of
cliques of size k in Γ . Let Γ (1) be the graph we get from Γ after deleting the node {a1, b1}. (We
do not delete any of the nodes a1 or b1.)

There must be a clique of size k in Γ (1). Let ∆ be such a clique. If {a2, b2} is an edge of ∆,
then there is a clique ∆2 of size k− 2 in N(a2)∩N(b2). Hence ∆2 is a clique of size k− 2 in Γ2.
This contradicts the indirect assumption. Thus {a2, b2} is not an edge of any clique of size k in
Γ (1). This means that we may delete the edge {a2, b2} from Γ (1) to get the graph Γ (2).

Continuing in this way after σ steps we get that there must be a clique of size k in Γ (σ). On

the other hand note that in the adjacency matrix M(σ) of Γ (σ) the M
(σ)
i,i blocks are zero matrices

as we have deleted the edges {a1, b1}, . . . , {aσ, bσ}. In other words the nodes of Γ (σ) can be well
colored using k − 1 colors. Thus Γ (σ) cannot have any clique of size k. This contradiction
completes the proof. �

Problem 7 Let Γ be a graph and let t be a positive integer. Construct a (σ, t)-quasi coloring
of Γ keeping the value of σ possibly small.

Here is a straight forward greedy algorithm in which we maintain t + 1 lists L,L1, . . . , Lt.
At the beginning of the computation L = V , L1 = · · · = Lt = ∅. While L 6= ∅ let us iterate
the following procedure. Pick an a ∈ L. Let di be the number of neighbors of a in Li. Let
dj be the least among d1, . . . , dt. Then set L = L \ {a}, Lj = Lj ∪ {a}. When L = ∅ set
C1 = L1, . . . , Ct = Lt. Clearly, the sets C1, . . . , Ct form a partition of V . A moment of
contemplation will convince the reader that the number of times this procedure reads an entry
of the adjacency matrix is at most (1/2)n(n− 1), where n is the number of the nodes of Γ .

Alternatively one can construct a (σ, t)-quasi coloring starting with a well coloring of Γ . Let
C1, . . . , Cs be the color classes of a well coloring of Γ . Suppose that the situation is arranged
such that |C1| ≥ · · · ≥ |Cs|. Initialize the lists L,L1, . . . , Lt by setting

L = Ct+1 ∪ · · · ∪ Cs, L1 = C1, . . . , Lt = Ct.

Then distribute the elements of L among the lists L1, . . . , Lt using the algorithm above.
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A parallel k-clique search algorithm can be summarized in the following way. Let us start with
the graph Γ . Construct a (σ, k−1)-quasi coloring for Γ . Locate the edges {a1, b1}, . . . , {aσ, bσ}.
Based on these edges construct the graphs Γ1, . . . ,Γσ. By Proposition 6, one of Γ1, . . . ,Γσ has
a clique of size k − 2 if and only if Γ has a clique of size k. In short we reduced the problem
into a large number of smaller problems that can be processed independently of each other. The
independent processes are free to use any serial (k − 2)-clique search algorithm.

The algorithm above can also be used to list all k-cliques in Γ . Namely, list all (k−2)-cliques
in Γi then augment them with the nodes ai, bi to get the k-cliques in Γ . We should be aware of
that in this way we may meet a given k-clique in Γ more than once. If this is undesirable, then
one should use the graphs Γ ∗1 , . . . ,Γ

∗
σ in place of the graphs Γ1, . . . ,Γσ. Here Γ ∗i is constructed

from Γi by deleting the edges {a1, b1}, . . . , {ai−1, bi−1}. (But not deleting the end points of the
edges.) The next proposition justifies this claim.

Suppose that ∆i is a clique of size k − 2 in Γ ∗i . Obviously ∆i is a clique in Γi too. Set

∆(i) = ∆i ∪ {ai} ∪ {bi}. By the construction of Γi, ∆(i) is a clique of size k in Γ .

Proposition 7 ∆(i) = ∆(j) implies i = j.

Proof. Assume on the contrary i 6= j and ∆(i) = ∆(j). We may assume that i < j since this
is only a matter of swapping the roles of i and j. From ∆(i) = ∆(j) it follows that {ai, bi} is an
edge of ∆(j). Hence {ai, bi} is an edge of Γ ∗j . But by the construction of Γ ∗j , {ai, bi} is not an
edge of Γ ∗j . �

6. Dominating nodes
We introduce a binary relation between the nodes of a graph.

Definition 5 Let Γ be a graph and let a, b be distinct nodes of Γ . We say that b dominates a
if a and b are not connected by an edge of Γ and N(a) ⊆ N(b).

An example of dominated nodes can be seen in figure 5. One can observe that a dominated
node can be dropped from the graph during the search for a maximum clique. This is the very
reason why we introduced the concept of dominance We spell out this observation formally as a
proposition.

Proposition 8 If a is dominated by b, then a can be canceled from Γ when we are deciding if
Γ contains a clique of size k for any given fixed k.

Proof. Let ∆ be a clique of size k of Γ . Let Γ ′ be the graph we get from Γ after deleting the
node a. Only one of the following four possibilities may hold in connection with a, b, ∆

(i) a ∈ ∆, b ∈ ∆,

(ii) a ∈ ∆, b 6∈ ∆,

(iii) a 6∈ ∆, b ∈ ∆,

(iv) a 6∈ ∆, b 6∈ ∆.

If a 6∈ ∆, then ∆ ⊆ Γ ′ and so Γ ′ contains a clique of size k. For the remaining part of the proof
we may assume that a ∈ ∆. Note that b ∈ ∆ cannot hold since a and b are not connected by
edge in Γ . Thus b 6∈ ∆. Since a ∈ ∆, there is a clique ∆1 of size k− 1 in N(a). Now ∆1 ⊆ N(b)
as N(a) ⊆ N(b). Clearly, ∆1 ∪ {b} is a clique of size k. Thus Γ ′ contains a clique of size k. �

We would like to emphasize that listing all maximum cliques (or k-cliques) in Γ ′ does not
necessarily provide a complete list of the maximal cliques (or k-cliques) of Γ . In other words the
reduction offered by Proposition 8 is not applicable when one needs complete lists of maximum
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Figure 5. Node a is dominated by node b.

or k-cliques. On the other hand getting rid of certain maximal cliques (or k-cliques) promises
that an algorithm visits a smaller portion of the search space.

The dominance relation is obviously not symmetric. Further the dominance relation is
not anti symmetric either as it may happen that a and b are distinct nodes of Γ such that
N(a) = N(b), a and b are not connected by an edge in Γ . In this case a and b are mutually
dominate each other in the same time a and b are not equal.

Proposition 9 The dominance relation is transitive.

Proof. Let a, b, c be vertices of the graph Γ . Suppose that a and b are not connected by edge
in Γ and N(a) ⊆ N(b). Further suppose that b and c are not connected and N(b) ⊆ N(c). If
a and c are not connected by edge in Γ , then c dominates a. For the remaining part of the
proof we may assume that there is an edge between a and c. This means that c ∈ N(a). Using
N(a) ⊆ N(b) it follows that c ∈ N(b). Therefore b and c are connected by edge in Γ . This is an
outright contradiction. �

Let a, b, c distinct nodes of Γ such that b dominates a. Let Γ ′ be the graph we get from Γ
after deleting c.

Proposition 10 Node b dominates node a in Γ ′ too.

Proof. Assume that b dominates a in Γ . This means that a and b are not connected distinct
nodes such that N(a) ⊆ N(b). For a node u of Γ ′ the set of neighbors of u in Γ ′ is denoted by
N ′(u). It is plain that a and b are not connected in Γ ′. We should verify that N ′(a) ⊆ N ′(b).
We distinguish the following four cases

(i) c 6∈ N(a), c 6∈ N(b),

(ii) c 6∈ N(a), c ∈ N(b),

(iii) c ∈ N(a), c 6∈ N(b),

(iv) c ∈ N(a), c ∈ N(b).

If c 6∈ N(a) and c 6∈ N(b), then N ′(a) = N(a) and N ′(b) = N(b). From N(a) ⊆ N(b) it
follows that N ′(a) ⊆ N ′(b).

If c 6∈ N(a) and c ∈ N(b), then N ′(a) = N(a) and N ′(b) = N(b) \ {c}. Subtracting {c} from
both sides of N(a) ⊆ N(b) implies that N ′(a) ⊆ N ′(b).

If c ∈ N(a) and c 6∈ N(b), then N(a) ⊆ N(b) gives the contradiction that c ∈ N(b). Therefore
this case is not possible.

If c ∈ N(a) and c ∈ N(b), then N ′(a) = N(a) \ {c} and N ′(b) = N(b) \ {c}. Subtracting {c}
from both sides of N(a) ⊆ N(b) we get that N ′(a) ⊆ N ′(b). �
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In order to illustrate the results in this section let us consider an example. Let Γ be the
graph depicted in figure 6. The adjacency matrix of Γ is given by table 2. An inspection reveals
that

node 2 dominates nodes 1, 5, 9,

node 3 dominates node 4,

node 5 dominates nodes 1, 2, 9,

node 6 dominates node 4,

node 7 dominates nodes 3, 4, 6.

By Proposition 8, we may delete nodes 1, 2, 3, 4, 6, 9 from the graph when we are looking for a
maximum clique. The remaining nodes are 5, 7, 8. They form a clique of size 3. Therefore the
size of the maximum clique in the original graph is 3.

The graph in the example above is exceedingly small. However it illustrates the point well.
Namely, before embarking on determining the size of a maximum clique in a given graph we
should inspect the graph to spot dominating nodes. When found the dominated node can be
deleted and we should start to look for dominating nodes in the reduced graph.

Problem 8 Given a graph Γ and a node a of Γ . Decide if there is node b in Γ that dominates
node a.

A proposed algorithm for solving Problem 8 works with two lists L1 and L2. We fill in L1

with the neighbors of a. The order of the elements in L1 is irrelevant. We fill in L2 with the
non-neighbors of a. Again, the ordering of the elements in L2 is irrelevant. (We do not place a
to L2.) Pick a b ∈ L2. Note that if for each c ∈ L1 the edge {c, b} is edge of Γ , then b dominates
a. In order to verify the claim note that the nodes a, b are not adjacent as b 6∈ N(a). Further
N(a) ⊆ N(b) holds since c ∈ N(a) implies c ∈ N(b).

The algorithm above reads an entry of the adjacency matrix of Γ to check if two nodes are
adjacent or not. Let s be the number of times the algorithm reads a single entry of the adjacency
matrix. Let n be the number of nodes of Γ .

Proposition 11 s ≤ n+ (1/4)n2.

Proof. Let n1 be the length of L1 and let n2 be the length of L2. Clearly n1 + n2 = n − 1.
Filling in L1 and L2 needs n readings of the adjacency matrix. For an element b ∈ L2 there
are n2 choices. For an element c ∈ L1 there are n1 choices. After at most n1n2 readings of the
adjacency matrix we will reach a definite conclusion if there is a b ∈ L2 such that {b, c} is an
edge of Γ for each c ∈ L1.

The solution of the optimization problem, maximize n1n2 subject to n1 + n2 = n − 1, is
n1 = n2 = (1/2)(n− 1). Therefore s ≤ n+ n1n2 ≤ n+ (1/4)(n− 1)2 ≤ n+ (1/4)n2. �

Problem 8 is formulated solely for the purpose to incorporate the algorithm that solves it
into the Carraghan-Pardalos clique search algorithm. (The description of the algorithm with
a complete program can be found in [11].) The author has experimented with this modified
clique search algorithm. The result is that there are graphs for which the extra work of testing
dominance pays off and there are graph for which the modified algorithm slows down very
slightly.

Another way to utilize this algorithm is simply to inspect the initial adjacency matrix of Γ
to test if there are nodes to delete before one starts the proper clique search. By Proposition
11, the full inspection can be accomplished in at most n2 + (1/4)n3 looks up of a single entry of
the adjacency matrix. When a dominated node is found we can delete the node at once. Since
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Table 2. The adjacency matrix of Γ in the second example

1 2 3 4 5 6 7 8 9
1 × • • • •
2 × • • • • •
3 • • × • •
4 • • × •
5 • • × • • •
6 • • • × •
7 • • • × • •
8 • • • • × •
9 • • • ×
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Figure 6. The graph Γ in the second example.

by Proposition 10, the dominated nodes in the original graph remain dominated in the reduced
graph.

The edge dominance problem can be put in a different form. Given a node b of Γ . Find all
nodes a of Γ that is dominated by b. This problem can be solved in a similar way. Initially set
the list L to be the non-neighbors of b. (L = V \ [N(b) ∪ {b}].) Note that if a ∈ L and for each
c ∈ L, {c, a} is not edge of Γ , then b dominates a.

Let m = |L|, n = |V |. The list L can be initialized with n looks up of the adjacency matrix
of Γ . The node c ∈ L can be chosen in m ways. Similarly, the node a ∈ L can be chosen in m
ways. Therefore after at most n+m2 looks up we have a list of the nodes dominated by b.

In challenging clique search instances the nodes usually have more neighbors than non-
neighbors. In the m < n/2 particular case the worst case estimate for this algorithm is better
than the worst case estimate for the previous algorithm. The author has been experimenting
with the dominance spotting in the original graph for a considerable time. There are cases when
no dominated nodes are spotted at all and the initial graph cannot be reduced in this manner
However, there are cases when the clique search problem with the original graph is out of the
feasibility range while it is feasible for the reduced graph.
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Figure 7. Edge {a, u} is dominated by edge {u, b}. The dominance is short.

7. Dominating edges
We introduce dominance relations between edges of a graph.

Definition 6 Let Γ be a graph and let a, u, b be distinct nodes of Γ such that {a, u}, {u, b}
are edges of Γ . We say that edge {u, b} dominates edge {a, u} if b 6∈ N(a) ∩ N(u) and
N(a) ∩N(u) ⊆ N(u) ∩N(b).

The dominance in Definition 6 is illustrated by figure 7. We will introduce another edge
dominance later so let us call the above defined edge dominance short edge dominance. Let Γ ′

be the graph we get from Γ after deleting the edge {a, u}. (But not deleting the nodes a or u.)

Proposition 12 If Γ contains a clique of size k, then so does Γ ′.

Proof. Let ∆ be a clique of size k in Γ . If {a, u} is not an edge of ∆, then ∆ is a clique of size k
in Γ ′ too. For the remaining part of the proof we may assume that {a, u} is an edge of ∆. Now
there is a clique ∆1 of size k−2 in N(a)∩N(u). Simply we can choose ∆1 to be ∆\ ({a}∪{u}).
Using N(a) ∩N(u) ⊆ N(u) ∩N(b) we get that ∆1 is a clique of size k − 2 in N(u) ∩N(b). It
follows that ∆2 = ∆1 ∪ {u} ∪ {b} is a clique in Γ . Note that a 6∈ ∆1, u 6∈ ∆1. Consequently ∆2

is a clique of size k in Γ ′. �

Proposition 13 If edge {a, u} is dominated by edge {u, b} and edge {b, u} is dominated by edge
{u, c}, then edge {a, u} is dominated by edge {u, c}.

Proof. We have to verify that c 6∈ N(a)∩N(u) and N(a)∩N(u) ⊆ N(u)∩N(c). In order to show
that c 6∈ N(a) ∩N(u) assume on the contrary that c ∈ N(a) ∩N(u). The fact that edge {a, u}
is dominated by edge {u, b} means that N(a) ∩ N(u) ⊆ N(u) ∩ N(b). Thus c 6∈ N(u) ∩ N(b).
But as edge {b, u} is dominated by edge {u, c}, c 6∈ N(b)∩N(u). This contradiction shows that
c 6∈ N(a) ∩N(u), as required.

In order to show that N(a) ∩ N(u) ⊆ N(u) ∩ N(c) note that N(a) ∩ N(u) ⊆ N(u) ∩ N(b)
since node {a, u} is dominated by edge {u, b}. Further N(b) ∩N(u) ⊆ N(u) ∩N(c) since edge
{b, u} is dominated by edge {u, c}. Thus N(a) ∩N(u) ⊆ N(u) ∩N(c), as required. �

Let a, b, c, u, v be nodes of Γ such that {a, u} is dominated by {u, b} and {a, v} is dominated
by {v, c}. Let Γ ′ be the graph we get from Γ after deleting the edge {a, u}. (But not deleting
the nodes a or u.)

Proposition 14 Node {a, v} is dominated by {v, b} in Γ ′.

Proof. From the assumptions of the proposition we know that

{a, u}, {u, b} are edges of Γ , (1)

a, b are not adjacent in Γ , (2)
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N(a) ∩N(u) ⊆ N(u) ∩N(b). (3)

Further
{a, v}, {v, c} are edges of Γ , (4)

a, c are not adjacent in Γ , (5)

N(a) ∩N(v) ⊆ N(v) ∩N(c). (6)

Using these we would like to verify that

{a, v}, {v, c} are edges of Γ ′, (7)

a, c are not adjacent in Γ ′, (8)

N ′(a) ∩N ′(v) ⊆ N ′(v) ∩N ′(c). (9)

Here N ′(x) stands for the set of neighbors of x in Γ ′.
By (5), a and c are not adjacent in Γ . Deleting the edge {a, u} is not going to make a and u

adjacent. This verifies (8).
By (4), {a, v}, {v, c} are edges of Γ . Deleting the edge {a, u} cannot alter this fact. This

verifies (7).
In order to verify (9) note that only the following cases may occur in connection with u,

N(a) ∩N(v), N(v) ∩N(c).

(i) u 6∈ N(a) ∩N(v), u 6∈ N(v) ∩N(c),

(ii) u 6∈ N(a) ∩N(v), u ∈ N(v) ∩N(c),

(iii) u ∈ N(a) ∩N(v), u 6∈ N(v) ∩N(c),

(iv) u ∈ N(a) ∩N(v), u ∈ N(v) ∩N(c).

By (6), the third case is not possible. In the first case

N ′(a) ∩N ′(v) = N(a) ∩N(v), N ′(v) ∩N ′(c) = N(v) ∩N(c)

and so by (6), (9) holds. In the fourth case

N ′(a) ∩N ′(v) = [N(a) ∩N(v)] \ {u}, N ′(v) ∩N ′(c) = [N(v) ∩N(c)] \ {u}

and so by (6), (9) follows. In the second case

N ′(a) ∩N ′(v) = [N(a) ∩N(v)] \ {u}, N ′(v) ∩N ′(c) = N(v) ∩N(c)

and (9) follows. �

Definition 7 Let Γ be a graph and let x, y, u, v be distinct point of Γ such that {x, y}, {u, v}
are edges of Γ . We say that edge {u, v} dominates edge {x, y} if each of the following holds

(i) {u, x} or {u, y} is not edge of Γ ,

(ii) {v, x} or {v, y} is not edge of Γ ,

(iii) N(x) ∩N(y) ⊆ N(u) ∩N(v).

The edge dominance in Definition 7 can be seen in figure 8. The edge dominance defined
here will be referred as long edge dominance. Let Θ be the subgraph of Γ spanned by the set
of vertices {x, y, u, v}. In the situation described in the definition {x, y}, {u, v} are edges of Θ .
Then any of the remaining pairs {x, u}, {x, v}, {y, u}, {y, v} is either an edge of Θ or not. Out
of the overall 16 cases conditions (i) and (ii) hold in 7 cases and do not hold in 9 cases.

Let us use the notation Γ ′ for the graph we get from Γ after deleting the edge {x, y}. (We
do not delete the nodes x or y.)
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Figure 8. Edge {x, y} is dominated by edge {u, v}. The dominance is long.

Proposition 15 If Γ contains a clique of size k, then so does Γ ′.

Proof. Let ∆ be a clique of size k in Γ . If x is not a node of ∆, then edge {x, y} is not an edge
of ∆. Consequently, ∆ is a clique of size k in Γ ′ too. Similarly, if y is not a node of ∆, then ∆
is a clique of size k in Γ ′ again. In both cases Γ ′ contains a clique of size k, as required. For
the rest of the proof we may assume that x, y are nodes of ∆. The nodes of ∆ that are distinct
from x and y are coming from N(x)∩N(y) and so ∆1 = ∆ \ ({x} ∪ {y}) is a clique of size k− 2
in N(x)∩N(y). Using N(x)∩N(y) ⊆ N(u)∩N(v) we can see that ∆1 is a clique of size k−2 in
N(u) ∩N(v). Each node of ∆1 is connected to u and v. This means that ∆2 = ∆1 ∪ {u} ∪ {v}
is a clique in Γ ′. We will show that u 6∈ ∆1, v 6∈ ∆1 This will provide that ∆2 is a clique of size
k in Γ ′.

In order to prove that u 6∈ ∆1 assume on the contrary that u ∈ ∆1. Plainly u ∈ ∆. Using the
fact that {x, y} is an edge of ∆ we get that {u, x}, {u, y} are edges of ∆. Then {u, x}, {u, y}
are edges of Γ . But this is not the case. Thus u 6∈ ∆1. A similar argument gives that v 6∈ ∆1. �

Proposition 16 If node {r, s} is dominated by edge {x, y} and node {x, y} is dominated by
edge {u, v}, then node {r, s} is dominated by edge {u, v}.

Proof. It is enough to verify that

{u, r} or {u, s} is not an edge of Γ (10)

{v, r} or {v, s} is not an edge of Γ (11)

N(r) ∩N(s) ⊆ N(u) ∩N(v) (12)

In order to prove (10) assume on the contrary that {u, r}, {u, s} are edges of Γ . This means that
u ∈ N(r)∩N(s). As edge {r, s} is dominated by edge {x, y}, it holds N(r)∩N(s) ⊆ N(x)∩N(y)
and so u ∈ N(x) ∩ N(y). As edge {x, y} is dominated by edge {u, v}, it holds that {u, x} or
{u, y} is not an edge of Γ and so u 6∈ N(x)∩N(y). This contradiction implies (10), as required.
The statement (11) can be verified in a similar way.

To prove (12) note that N(r) ∩N(s) ⊆ N(x) ∩N(y) since edge {r, s} is dominated by edge
{x, y}. Further, N(x) ∩N(y) ⊆ N(u) ∩N(v) since edge {x, y} is dominated by edge {u, v}. �

We would like to point out that the dominance concepts we introduced are not independent
of each other. The dominance of nodes and the (short) dominance of edges are related in the
following way. Let us suppose that edge {a, u} is (short) dominated by edge {u, b} in Γ . Working
in N(u) one can see that node a is (node) dominated by b.
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The short and long dominance of edges are related in the next way. Let us suppose that edge
{x, y} is (long) dominated by edge {u, v} in Γ . Assume that the nodes y and u are identical but
the nodes x, y, v are distinct. By the definition of long dominance

{x, y}, {u, v} are edges of Γ , (13)

{x, u} or {y, u} is not an edge of Γ , (14)

{x, v} or {y, v} is not an edge of Γ , (15)

N(x) ∩N(y) ⊆ N(u) ∩N(v). (16)

For the sake of clarity let us denote the identical y and u by z and set x = a, v = b. Now
conditions (13), (14), (15), (16) reduce to

{a, z}, {z, b} are edges of Γ , (17)

{a, z} or {z, z} is not an edge of Γ , (18)

{a, b} or {z, b} is not an edge of Γ , (19)

N(a) ∩N(z) ⊆ N(z) ∩N(b). (20)

As Γ does not have any loop, {z, z} cannot be an edge of Γ and so condition (18) drops out.
By (17), {z, b} is an edge of Γ and so by (19), {a, b} is not an edge of Γ . We are left with the
following conditions

{a, z}, {z, b} are edges of Γ , (21)

{a, b} is not an edge of Γ , (22)

N(a) ∩N(z) ⊆ N(z) ∩N(b). (23)

Therefore edge {a, z} is (short) dominated by edge {z, b}.
We consider the following problem.

Problem 9 Given a node a of Γ . Find all nodes u of Γ for which there is a node b of Γ such
that the edge {a, u} is (short) dominated by the edge {u, b}.

We describe an algorithm that solves this problem. The algorithm maintains four lists L1,
L2, L3, L4. Initially, L1 contains the neighbors of a and L2 contains the non-neighbors of a.
(We do not place a to L2.) Pick a u ∈ L1. Then fill in L3 with the elements of L1 ∩N(u) and
fill in L4 with the elements of N(u) ∩ L2.

Proposition 17 If there is a b ∈ L4 such that {b, c} is an edge of Γ for each c ∈ L3, then edge
{a, u} is (short) dominated by edge {u, b}.

Proof. We will verify that

{a, u}, {u, b} are edges of Γ , (24)

{a, b} is not an edge of Γ , (25)

N(a) ∩N(u) ⊆ N(u) ∩N(b). (26)

Using u ∈ L1 and L1 = N(a) we get that {a, u} is an edge of Γ . Using b ∈ L4 and the definition
of L4 we get that {u, b} is an edge of Γ . These prove (24).

From b ∈ L4 it follows that b ∈ L2. The elements of L2 are not adjacent to a and so {a, b} is
not an edge of Γ . This settles (25).
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To prove (26) choose a c ∈ N(a) ∩ N(u). In particular it holds that c ∈ N(a). Using
N(a) ∩ N(u) = L1 ∩ N(u) = L3 we get that c ∈ L3. By the definition of b, {c, b} is an edge
of Γ and so c ∈ N(b). Combining c ∈ N(a) and c ∈ N(b) implies c ∈ N(u)∩N(b), as required. �

Let s be the number of times the above algorithm reads single entries of the adjacency matrix
of Γ during execution and let n be the number of nodes of Γ .

Proposition 18 s ≤ n+ n2 + (2/9)n3

Proof. Let n1 be the length of L1 and let n2 be the length of L2. Note that n1 + n2 = n− 1.
The lists L1 and L2 can be filled in using n looks up of the adjacency matrix. For a fixed u the
lists L3 and L4 can be filled in using at most n look ups. Clearly the length of L3 is at most
n1 and the length of L4 is at most n2 in any time during the execution. For u ∈ L1 there are
at most n1 choices. For b ∈ L4 there are at most n2 choices. For c ∈ L3 there are at most n1
choices. (We included figure 9 to assist in following the argument.)

An upper estimate for s is

n+ n1(n+ n1n2) = n+ n1n+ n21n2 ≤ n+ n2 + n21n2.

The solution of the optimization problem, maximize n21n2 subject to n1 + n2 = n − 1, is
n1 = (2/3)(n−1), n2 = (1/3)(n−1). Therefore s ≤ n+n2+(2/9)(n−1)3 ≤ n+n2+(2/9)n3. �

We formulated Problem 9 with the definite purpose to incorporate the algorithm that solves
it into the Carraghan-Pardalos clique search algorithm. But in the same time the algorithm
above can be used to inspect the initial adjacency matrix to spot edges to delete. When we spot
a deletable edge we delete it immediately. This might look as a rather simple minded approach.
The deleted edge may dominate a number of further edges and so these edges will not be deleted
later. We included Proposition 14 to reassure the reader that in fact this is not going to happen.
By Proposition 18, the complete inspection looks up entries of the adjacency matrix at most
n2 + n3 + (2/9)n4 times.

8. Normal partitions
Let Γ be a graph with vertex set V .

Definition 8 A partition C1, . . . , Ct of V is called a normal partition of Γ if for each i, 1 ≤ i ≤ t
there is an element ci ∈ Ci such that the elements of Ci \ {ci} are not adjacent to ci and the
elements of Ci+1 ∪ · · · ∪ Ct are adjacent to ci.

The element ci is called the leading element of the class Ci.
Consider the graph Γ in the first example. We remind the reader that figure 1 depicts a

geometrical representation of Γ and table 1 contains two forms of the adjacency matrix of Γ .
Let

C1 = {1, 3, 6}, C2 = {4, 2}, C3 = {5},
c1 = 1, c2 = 4, c3 = 5.

It is a routine exercise to check that C1, C2, C3 is a normal partition of Γ with leading elements
c1, c2, c3. The list

(1) 3 6 || (4) 2 || (5)

could represent this partition in a more concise way.
Consider the graph Γ in the second example. For the reader convenience figure 6 presents Γ

in a geometric form with points and arcs while table 2 presents the adjacency matrix of Γ . Set

C1 = {2, 1, 5, 9}, C2 = {8, 4, 6}, C3 = {3, 7},
c1 = 2, c2 = 8, c3 = 3.
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One can verify that C1, C2, C3 is a normal partition of Γ with leading elements c1, c2, c3. The
list

(2) 1 5 9 || (8) 4 6 || (3) 7

could also be used to record this partition.
The normal partition C1, . . . , Ct of Γ can be viewed as a (σ, t)-quasi coloring of Γ . The

adjacency matrix M of Γ is cut into blocks Mi,j as we have seen in Section 5. Here 2σ is
the overall number of ones in the Mi,i blocks and {a1, b1}, . . . , {aσ, bσ} are the edges of Γ
corresponding to these ones. (Two 1’s in symmetrical positions with respect to the main diagonal
represent the same edge.) The subgraph of Γ spanned by N(ai) ∩N(bi) is denoted by Γi. Let
Γ ′ be the graph we get from Γ after deleting each of the edges {a1, b1}, . . . , {aσ, bσ}. (But not
deleting any of the end points of the edges.)

Proposition 19 If Γ has a clique of size k, then at least one of Γ1, . . . ,Γσ has a clique of size
k − 2 or Γ ′ has a clique of size k.

Proof. Assume that none of Γ1, . . . ,Γσ has a clique of size k− 2. Let ∆ be a clique of size k of
Γ . If for some i, 1 ≤ i ≤ σ, {ai, bi} is an edge of ∆, then Γi contains a clique of size k−2. This is
not the case so {ai, bi} is not an edge of ∆ for each i, 1 ≤ i ≤ σ. After deleting these edges from
Γ the subgraph ∆ is still a clique of size k in the remaining graph, that is, ∆ is a clique in Γ ′. �

Proposition 20 The size of the maximum clique in Γ ′ is t.

Proof. As the elements of C2∪· · ·∪Ct are adjacent to c1 and c2, . . . , ct ∈ C2∪· · ·∪Ct, it follows
that c1 is adjacent to each of c2, . . . , ct. Similarly, as the elements of C3∪· · ·∪Ct are adjacent to
c2 and c3, . . . , ct ∈ C3 ∪ · · · ∪Ct, it follows that c2 is adjacent to each of c3, . . . , ct. Continuing in
this way finally we have that any two distinct nodes among c1, . . . , ct are adjacent. Thus there
is a clique of size t in Γ ′.

Let M′ be the adjacency matrix of Γ ′. Note that the blocks M′
i,i of M′ are zero matrices

and so Γ ′ can be well colored using t colors. Consequently Γ ′ cannot have a clique of size t+1. �

Problem 10 Given a graph Γ . Construct a normal partition C1, . . . , Ct for Γ .

One can construct a normal partition of a given graph using the following greedy procedure.
Let V be the vertex set of the given graph Γ . Set i = 0, L = V . While L 6= ∅ choose an a ∈ L
for which |N(a)| is the largest possible. Increment i by one and set ci = a, Ci = L \ N(a),
L = N(a).
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By Proposition 19, when we are looking for a k-clique in Γ we should check if the graphs
Γ1, . . . ,Γσ has a clique of size k − 2 or the graph Γ ′ has a clique of size k. If k = t, then by
Proposition 20, Γ ′ has a clique of size k. If k > t, then again by Proposition 20, we do not need
to check Γ ′ at all. Thus we need to work only with the graphs Γ1, . . . ,Γσ.

The normal partition C1, . . . , Ct helps us to detect dominated nodes. To see how let
C1 = {a1, . . . , as}, where a1 = c1. Consider the block M1,1 of the adjacency matrix M of
Γ . The first row and the first column of M1,1 is filled with zeros as a1 is not adjacent to
a2, . . . , as. If the second row and second column is filled with zeros, then node a1 dominates a2.
Indeed, a1 and a2 are not adjacent. Further N(a2) ⊆ N(a1) holds as c1 = a1 is adjacent to the
elements of C2 ∪ · · · ∪Ct. In short if the second row of M1,1 contains only zeros, then the node
a2 can be canceled from the graph Γ when we are looking for a k-clique in Γ .

Suppose there are 2r non-zero elements in the second row and the second column of the matrix
M1,1 and Γ1, . . . ,Γr are the graphs among Γ1, . . . ,Γσ that correspond to ones in the second row
and second column of M1,1. After completing the clique search for the graphs Γ1, . . . ,Γr we
can delete the ones from the second row and second column of M1,1 for the remaining part of
the work. Therefore the node a2 can be deleted from the graphs Γr+1, . . . ,Γσ to get smaller
graphs to work with. We can repeat this reduction at any time when the non-zero elements in
a given row and in the corresponding column of the matrix are completely processed. In fact
these reductions can be carried out at the beginning of the computation and we end up with a
large collection of graphs that can be processed independently of each other.
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