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Algebraic Geometry and Elliptic Integrals Approach

for Calculation of the Propagation Time of a Signal

Between GPS Satellites with Account of General

Relativity Theory

Bogdan G. Dimitrov

Abstract. The approach for calculating the propagation time of a signal between GPS
satellites will be summarized, based on the proposed new theoretical approach in several previous
publications, as well as the perspectives for future development of the theory. Topics include: 1.
Basic notions of inter-satellite communications. 2. Shapiro delay formulae in General Relativity
Theory - basic formalism and the necessity to extend the formalism by taking into account the
satellite motion on a plane elliptic or space-distributed elliptic orbit. 3. Basic facts about
the disturbed motion in celestial mechanics and the necessity to incorporate it in the theory
of inter-satellite communications, accounting for General Relativity Effects. 4. Propagation
time of a signal, emitted by a satellite on a plane and also space-distributed elliptical orbit in
terms of zero-order elliptic integrals and respectively of higher order integrals. Proof of the
real-valuedness of the propagation time for all cases as one of the criteria for the correctness
of the theoretical approach. 5. New analytical algorithms for calculation of zero-order elliptic
integrals in the Legendre form. Relation to two representations in the Weierstrass form. 6. The
new formalism of intersecting four-dimensional null cones and the resulting physical notions of
the (intersecting)) space-time interval (with the property of being positive, negative or equal
to zero) and the (intersecting) geodesic distance (being only positive, because is related to the
distance, travelled by light or radio signals). Proof of these properties in the general case and
in some partial cases. New numerical estimate Elim > 45.002510943228 [deg], above which
the space-time interval is positive and thus inter-satellite communications between satellites
on one plane elliptical orbit are possible. The angular distance of 45[ deg] is typical for the
disposition of 8 satellites on one orbit in the Russian satellite constellation GLONASS, so it
might be claimed that such a configuration is favourable from the point of view of inter-satellite
communications (with account of GRT effects).
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1. Introduction
Autonomous navigation is one of the most important ingredients of satellite communications.
The essence of such a concept is that a satellite system such as the Global Navigation Satellite
System (GNSS), consisting of 30 satellites and orbiting the Earth at a height of 23616 km
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should be able to function properly without exchanging any signals with ground stations in
the course of 6 months (180 days). This means that GNSS should be inter-operable with other
navigational satellite systems such as GPS (Global Positioning System) and the Russian system
GLONASS (Globalnaya Navigazionnaia Sputnikovaia Sistema) (see the monographs [1] and
[2] for a brief introduction into the characteristics of these systems). In other words, satellites on
different orbital planes should be able to exchange signals between each other and in such a way,
”inter-satellite communications” are realized. Since the exchange of signals takes place in the
near-Earth gravitational field (and generally in the gravitational field of the Solar system), the
creation of a theory for such processes should take into account the General Relativity Theory
effects. In brief, this theory is based on the following two important facts:

1. An electromagnetic, radio or light signal (including a laser signal) is propagating on the
null light cone, which can be obtained after setting up the infinitesimal metric element equal to
zero ds2 = 0. The metric element ds2 will be given later in the paper and is chosen to be typical
for the near-Earth space. A general theory of the signal propagation in the gravitational field is
given in the contemporary monograph [3].

2. From a qualitative and also physical point of view, the significance of the null cone light
equation is that it gives the opportunity to calculate the propagation time of the signal - the
well-known Shapiro delay formulae, known yet from 1964 [4] and widely applied in various
investigations. The Shapiro delay formulae has an important physical meaning - due to the
action of the gravitational field, which ”curves” the trajectory of the signal, the propagation time
increases with a small logarithmic correction. Although very small (at the order of picoseconds),
it plays an important role in satellite ranging, presently achieved with great precision.

It should be stressed that the application of General Relativity Theory in the theory of signal
propagation between GPS satellites began in the pioneering works of Neil Ashby [5] and [6],
where the s.c. increment of the coordinate time ∆t was calculated as∫

path

∆t =

∫
path

[
1− (V − Φ)

c2
+

v2

2c2

]
dτ , (1)

representing a (path) integral over the path of the atomic clock (on board of the satellite), V
and Φ are potentials of the Earth and v is the orbital velocity of the satellite. In fact, as noted
in [5], ”the rate of coordinate time is determined by atomic clocks at rest at infinity, but the rate
of the GPS coordinate time, however, is closely related to the International Atomic Time (TAI),
which is a time scale computed on the basis of inputs from hundreds of primary time standards,
hydrogen masers, and other clocks from all over the world.” Because of these path-dependent
effects (especially for the case of the inter-satellite communications (ISC) to be considered in
this paper), comprising also time dilation (apparent slowing of moving clocks) and frequency
shifts due to gravitation, the proper time cannot be used when a signal is being transmitted
between two satellites. However, this statement needs to be clarified. If the definition of the
atomic time τ is used and also formulae (1), it can be written also [5]

dτ =
ds

c
=

[
1 +

(V − Φ)

c2
− v2

2c2

]
dt , (2)

from where it can be concluded that the proper atomic time of fictitious atomic clocks at rest
and in a local inertial frame agrees with the coordinate time up to the accuracy of O( 1

c2
) terms.

By definition, an accuracy of O( 1
c2

) or O(1
c ) means that terms of the order 1

c2
or 1

c are accounted

in the corresponding expressions. For example, up to O(1
c ) terms and taking into account the

metric element ds2 in its most general form

ds2 = g00c
2dt2 + 2g0jcdtdx

j + gijdx
idxj = 0 , (3)
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the increment of the coordinate time ∆t can be found first as a solution of a quadratic algebraic
equation and subsequently - a differential equation [7]

∆t = ±1

c

B∫
A

1√
−g

.

√(
gij +

g0ig0j

g00

)
dxidxj +

1

c

B∫
A

g0j

−g00
dxj . (4)

The coordinate time now is related to the propagation of a light or radio signal from a space-
point A to the space-point B and therefore represents the propagation time ∆t = TB − TA
with TB and TA being the times of reception and emission. Two important conclusions can be
made: 1. Since time in satellites is measured by means of atomic clocks and atomic time agrees
with the propagation (coordinate) time up to terms of a certain order in 1

c , it is a measurable

quantity. 2. The presence of the differentials dxi enables to find such a parametrization of the
space coordinates, which might not necessarily be related to the signal propagation path and the
endpoints A and B. In the present investigation, the coordinates x, y and z will be related to
the elliptic motion of the satellite and the endpoints A and B will mark the initial position of the
satellite on the orbit (when it emits the signal) and the point B-the final position of the satellite,
when the signal is percepted. The reason why the reference system is chosen to be attached
to the satellite trajectory is that the s.c. orbital parameters of all the satellite configurations
GPS, GLONASS, Galileo and BeiDou are known with great accuracy. Further this will be
demonstrated. In spite of the fact that the satellite motion will be very important in calculating
the propagation time of the signal, it will be proved by simple numerical calculations that the
obtained propagation time is typical for the light or radio signals and is not directly related to
the celestial time of motion of the satellite. This means that the propagation time is determined
by the type of equation used for its calculation (in the case this is the null cone equation) and
not by the type of the spatial reference system.

Two cases will be considered further.
1st case This is the most simple case of plane elliptical motion of the satellite on an ellipse,

parametrized as

x = a(cosE − e) , y = a
.
√

1− e2 sinE , (5)

where E is the eccentric anomaly angle (characterizing the position of the satellite on the orbit)
and a and e are respectively the semi-major axis and the eccentricity of the ellipse. This is the
problem, investigated in a series of publications. Although in a sense the notion about the
”plane elliptical motion” is an idealized one, any further development of the theory (see the
proposal in the next ”2-nd case”) will be based on the applied approach. An interesting fact,
which will be proved is that the obtained from the null cone equation propagation time has the
dimension of seconds. This is a nontrivial fact, since the propagation time is expressed by a
combination of elliptic integrals of the first, second and the third kind, so it is not evident at
the beginning that the elliptic integrals are real-valued expressions. This should be so, because
time (in the case-the propagation time) as a physical quantity cannot be imaginary. Moreover,
further it will be shown that for the case of space-distributed orbits, the corresponding higher-
order (second and fourth) order elliptic integrals are imaginary, but since they enter imaginary
expressions for the propagation time, it will be again a real-valued quantity.

2. Perturbed motion in celestial mechanics and its relation to the problem about
signal propagation
2-nd case. This is the more complicated case of space-distributed (elliptical) orbits, characterized
by the full set of 6 Keplerian parameters (M,a, e,Ω, I, ω) (called in some monographs such as

[8] ”the contact elements” or ”orbital elements”), where M =
√

GM⊕
a3

is the mean motion and
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Ω, I, ω are analogous of the Eulerian angles (known from theoretical and celestial mechanics)
which will be defined further. Following the same mathematical formalism and assuming that
the position of the satellite is determined only by means of the true anomaly angle f (i.e. the
other orbital parameters do not change), it will be proved in this paper that the propagation
time will depend on more complicated elliptic integrals of the second and fourth order (the order
of the elliptic integral is determined by the degree of the integration variable in the nominator of
the under-integrand expression). This result is important both from physical and mathematical
point of view, because a complete theory how the propagation time changes under the changes
(δM, δa, δe, δΩ, δI, δω) of the orbital elements is still lacking. These changes are caused by
gravitational perturbations by celestial bodies, tidal forces and etc. A well-known theoretical
method in celestial mechanics is the method of ”osculating conics”, the essence of which is that
the orbital elements are assumed to depend on time {Ci(t) = (M(t), a(t), e(t),Ω(t), I(t), ω(t)),
i = 1, 2, 3......, 5, 6)} [8]. It is assumed that the body under consideration moves along a conic,
which is osculating (i.e. tangent) to the actual physical trajectory and so it is slowly evolving.
In other words, if the orbital vector −→r and the velocity vector −→v depend on time and on the
orbital parameters Ci(t)

−→r = −→r (t, C1(t), C2(t), C3(t), C4(t), C5(t), C6(t)) ,

.

∂−→r
∂t

= −→v (t, C1(t), C2(t), C3(t), C4(t), C5(t), C6(t)) (6)

and the parameter t plays the role of time in the perturbed equation of motion

∂2−→r
∂t2

+
GM

r3
−→r +

6∑
i=1

∂−→v
∂Ci

.
dCi
dt

= Fi , (7)

then a constraint called ” Lagrange constraint” is imposed [8]

6∑
i=1

∂−→r
∂Ci

.
dCi
dt

= 0 . (8)

The last equality means that locally the physical trajectory, defined by {Ci(t), i =
1, 2, 3......, 5, 6)}, will coincide with the unperturbed orbit, followed by the body if the
perturbations were to cease instantaneously. An important consequence of the theory is the
nonlinear system of ordinary differential equations in the Euler-Gauss form [8] with respect to
dM(t)
dt , da(t)

dt ,
de(t)
dt ,

dΩ(t)
dt , dI(t)dt

and dω(t)
dt . If the equations include the s.c. ”disturbing gravitational potential” (accounting

for the perturbations of outer celestial bodies), then the equations are called ”Lagrange planetary
equations” [8], [9], [10], [11].

The above formalism constitutes the fundamentals of the celestial mechanics theory of
disturbing motion, but the estimates in [5] for the perturbed radius-vector, perturbed eccentric
anomaly (based on the celestial mechanics monograph of Richard Fitzpatrick, ch.11.6, [12] ),
perturbed semi-major axis and perturbed energy are used to estimate the fractional frequency
shift

δf

f
= − v2

2c2
− GME

c2r
+
V ′

c2
, (9)

where V ′ is the perturbed energy. The estimate is based, however, only on the evaluation of
the separate contributions in the perturbed potential and not on any path integration, which
in principle can show how the parameters change. In other words, the change of each one of
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the parameters is not shown to what change in δf

f
will correspond. In order to avoid further

confusion, we have denoted here the frequency by f , to distinguish it from the true anomaly
angle f , used to denote the position of a satellite on a space-distributed orbit. In fact, the
calculation of the propagation time in this paper and the elliptic integrals of second and fourth
order will be related only to the true anomaly angle f as a variable of integration. Thus any
disturbances in the motion of the satellite will not be taken into account.

Since evidently because of the perturbations of all the 6 Keplerian parameters, it will be
natural to assume that the variation of the propagation time δT along all the perturbed orbital
elements (δM, δa, δe, δΩ, δI, δω) will give independent contributions

δT =
∂T

∂M
δM +

∂T

∂a
δa+

∂T

∂e
δe+

∂T

∂Ω
δΩ +

∂T

∂I
δI +

∂T

∂ω
δω . (10)

3. Keplerian parameters for space-distributed orbits of the satellite configurations
GPS, GLONASS, BeiDou and Galileo
If a theoretical model is created, the development of a numerical model will be greatly facilitated
by the fact that the Keplerian parameters are well-known for the satellite configurations GPS,
GLONASS [13], Galileo (European satellite system) and BeiDou (Chinese satellite system).
For example, the satellites of the Galileo constellation are situated on three orbital planes with
nine-equally spaced operational satellites in each plane. The Galileo satellites are in nearly
circular orbits with semi-major axis of 29600 km and a period of about 14 hours [14] and an
inclination of the orbital planes 56 degrees. For comparison, the Russian Global Navigation
Satellite System GLONASS, launched in 1982, consists of 21 satellites in three orbital planes.
Each satellite operates in nearly circular orbits with semi-major axis of 25510 km, and the
satellites within the same orbital plane are equally spaced by 45 degrees. In the following
sections, this fact will be important when discussing the theoretical approach of the space-time
interval on two intersecting four-dimensional null cones. Each orbital plane has an inclination
angle of 64.80 ± 0.30 (see also [1]), which is more than the inclination angle 560 of the orbital
planes of the Galileo satellites. The longitude of ascending nodes ∆Ω between the orbital planes
and the argument of latitude difference ∆u are well-known and are correspondingly equal to
∆Ω = 1200 and ∆u = 450. The satellites of the GLONASS constellation within one orbit
are situated at an angular distance of 450 ( 8 satellites on one orbit). The eccentricity of the
orbit in [1] is estimated to be e < 0.01, but according to some other date it can be e = 0.02. A
GLONASS satellite completes an orbit in approximately 11 hours 15 minutes ±5 sec - less than
the orbital period of 14 hours for the Galileo satellite. Consequently, the three characteristic
angles of rotation - the eccentric anomaly E, the mean anomaly M = n(τ − t) and the true
anomaly f should be different for the different satellite systems and can be found from the
corresponding tables.

The data about the GPS satellites can be found in many monographs, but they are briefly
summarized for example in [15] - 6 orbital planes with 4− 5 satellites per orbit, semi-major axis
a = 26400 km, eccentricity at most e = 0.02, but further we shall use the more precise data from
the PhD dissertation [16]-a = 26560.25169632944 km and e = 0.01323881349526, the inclination
of the orbit I is equal to I = 55.50 [15] or I = 0.9614884100802 rad [16].The mean anomaly
M = −0.3134513508155 rad [16] will be used in order to determine the eccentric anomaly angle
E, related to the position of the satellite on the orbit and also to the true anomaly f , expressed
through E by means of the formulae

tan
f

2
=

√
1− cos f

1 + cos f
=

√
1 + e

1− e
tan

E

2
. (11)
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The data about the longitude of the ascending node Ω and the argument of perigee ω can also
be found in [16], but they will not be used for the concrete calculations in this paper.

4. Description of the most general theoretical model and the general system of
algebraic equations
Since the orbital parameters of the satellites from all the satellite constellations are well-known,
the following interesting research problem can be formulated: suppose that a light or radio signal
is being send from a satellite belonging to one satellite constellation with orbital parameters
(M1, a1, e1,Ω1, I1, ω1) to another satellite (from the same or from another constellation) on a
space-distributed orbit with another orbital parameters (M2, a2, e2,Ω2, I2, ω2). Then how can
the propagation time of the signal be calculated? This problem is more complicated than it might
seem because during the time of flight of the photon or radio signal, the orbital parameters of
the second satellite change.Consequently, the curved signal trajectory and the signal, emitted
from the first satellite should be ”correlated” with the movement of the second satellite. So
if one imagines that after its emission the signal is ”propagating” on the first null-cone (with
origin at the point of emission), then at the moment of reception the signal is propagating not
on the first null-cone, but on a second null-cone, defined with origin at the point of reception.
So these two points will be constantly changing, but the phenomena of emission and subsequent
reception of the signal mathematically will mean that the two four-dimensional null-cones (in
terms of the two sets of space-time coordinates T1, x1, y1, z1 and T2, x2, y2, z2 ) will intersect. If
the two sets of coordinates are expressed through the changing orbital parameters, then evidently
one obtains two seven-dimensional null cones (the coordinate times of emission T1 and T2 are
the additional seventh coordinates) in terms of the variables (dT1, dM1, da1, de1, dΩ1, dI1, dω1)
and (dT2, dM2, da2, de2, dΩ2, dI2, dω2), which should intersect. Correspondingly, the algebraic
equations of the two four-dimensional null cones in terms of the two sets of four-dimensional
coordinates (T1,x1, y1, z1) and (T2, x2, y2, z2) will be

ds2
1 = −c2

(
1 +

2V1

c2

)
(dT1)2 +

(
1− 2V1.

c2

)(
(dx1)2 + (dy1)2 + (dz1)2

)
= 0 , (12)

ds2
2 = −c2

(
1 +

2V2

c2

)
(dT2)2 +

(
1− 2V2.

c2

)(
(dx2)2 + (dy2)2 + (dz2)2

)
= 0 . (13)

These two null cones will not intersect, because their coordinates are independent. However, one
may intersect these null cones with the 14-dimensional hyperplane, defined as the differential of
the Euclidean distance RAB

dR2
AB = d(x1 − x2)2 + d(y1 − y2)2 + d(z1 − z2)2 . (14)

Now the problem about finding the propagation times T1 and T2 is formulated as
an algebraic geometry problem of the intersection of two seven-dimensional null cones
(12) and (13) (if written in terms of the variables (dT1, dM1, da1, de1, dΩ1, dI1, dω1) and
(dT2, dM2, da2, de2, dΩ2, dI2, dω2)) with the 14−dimensional hyperplane (14), written in terms
of all the two sets of variables. It may be noted that since the Euclidean distance R2

AB between
the satellites is changing, the distance R.AB depends on the following variables

R.AB = R.AB(T1,Γ
(1)
i , T2,Γ

(2)
i ) , (15)

where the following new notations are introduced

Γ
(1)
i = (M1, a1, e1,Ω1, I1, ω1) , Γ

(2)
i = (M2, a2, e2,Ω2, I2, ω2) , i = 1, 2, .....6 , (16)
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X
(1)
j = (x1, y1, z1) , X

(2)
j = (x2, y2, z2) , j = 1, 2, 3 . (17)

The notations Γ
(1)
i and Γ

(2)
i are the previous notations Ci(t) in (8), but here we do not necessarily

suppose that they depend on the ”perturbed time”. The notations (16) and (17) enable us to
write equation (12) in the following concise form

−c2
(

1 +
2V1

c2

)[ 6∑
i=1

∂T1

∂Γ
(1)
i

dΓ
(1)
i

]2

+

(
1− 2V1.

c2

) 3∑
j=1

[
6∑
i=1

∂X
(1)
j

∂Γ
(1)
i

dΓ
(1)
i

]2

= 0 . (18)

It may easily be proved that

(dT1)2 =

[
6∑
i=1

∂T1

∂Γ
(1)
i

dΓ
(1)
i

]2

=

6∑
i=1

(
∂T1

∂Γ
(1)
i

)2 (
dΓ

(1)
i

)2
+ 2

6∑
i,k=1
i6=k

(
∂T1

∂Γ
(1)
i

)(
∂T1

∂Γ
(1)
k

)
dΓ

(1)
i dΓ

(1)
k . (19)

An analogous formulae is valid also for the expression

[
6∑
i=1

∂X
(1)
j

∂Γ
(1)
i

dΓ
(1)
i

]2

. Thus expression (18) can

be written as a six-dimensional quadratic surface with respect to the variables dΓ
(1)
i i = 1, 2, ...6

−c2

(
1 +

2V1

c2

) 6∑
i=1

(
∂T1

∂Γ
(1)
i

)2 (
dΓ

(1)
i

)2
+ 2

6∑
i,k=1
i6=k

(
∂T1

∂Γ
(1)
i

)(
∂T1

∂Γ
(1)
k

)
dΓ

(1)
i dΓ

(1)
k



+

(
1− 2V1.

c2

) 6∑
i=1

3∑
j=1

(
∂X

(1)
j

∂Γ
(1)
i

)2 (
dΓ

(1)
i

)2
+ 2

6∑
i,k=1
i6=k

3∑
j=1

(
∂X

(1)
j

∂Γ
(1)
i

)(
∂X

(1)
j

∂Γ
(1)
k

)
dΓ

(1)
i dΓ

(1)
k

 = 0 .

(20)
The same type of an equation can be written with respect to equation (13) for the second
propagation time T2. Similarly, the equation (14) with respect to the 14−dimensional hyperplane
can be written as

dR2
AB =

3∑
j=1

2
(
X

(1)
j −X

(2)
j

) 6∑
i=1

[
∂X

(1)
j

∂Γ
(1)
i

dΓ
(1)
i −

∂X
(2)
j

∂Γ
(2)
i

dΓ
(2)
i

]
, (21)

where the differential dR2
AB should be found from

dR2
AB =

2∑
l=1

∂R2
AB

∂Tl

6∑
i=1

∂T(l)

∂Γ
(l)
i

dΓ
(l)
i +

2∑
l=1

6∑
i=1

∂R2
AB

∂Γ
(l)
i

dΓ
(l)
i . (22)

If in the system of equations (20)-(22) the differentials dΓ
(l)
i are considered to be independent

(meaning that the constraint (8) can no longer be applied ), then a complicated system of

nonlinear differential equations is obtained with respect to
∂X

(l)
j

∂Γ
(2)
i

,
∂T(l)

∂Γ
(l)
i

and
∂R2

AB
∂Tl

. In fact,

equations (20)-(22) are related to the s.c. intersection theory of algebraic surfaces and they
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are more peculiar and difficult to deal with in comparison with the examples, given in most
of the basic monographs on algebraic geometry (see for example [17] and [18]). In the cited
monographs, examples of conics are given [18], also intersection of conics [17]. Basic knowledge
about algebraic varieties and intersection theory can be found also in [17], the basic notions of
algebraic curves and algebraic geometry in a clear and accessible style are presented in [20], also
in [21].

5. The purpose of the present paper
The present paper is a part of a series of papers [22], [23], [24] and [25], each of which represents a
part of a systematic approach, aiming at creating a new theoretical formalism for the description
of satellite communications between two satellites on different space-distributed orbit, accounting
for the effects of GRT. In this final form, the problem is rather complicated and so can be treated,
if several other more simple problems are solved. The purposes of this review are several:

1. To present a more general description of the problem, both from physical and mathematical
aspects, which have not been given in the previous publications. This has already been performed
in the previous sections.

2. To present the mathematical derivation of the propagation time of a signal in terms of
zero-order elliptic integrals of the first, second and the third kind for the most simple case of
a signal, emitted by a moving along a plane elliptical orbit [24]. This case may seem highly
unrealistic, but here the main problem is to justify the assumed elliptical parametrization of
the space coordinates in the null cone equation. In order to avoid any doubts that the obtained
propagation time is really related to the signal propagation and not to the movement of the
satellite, an additional (not previously presented) section has been added with some concrete
numerical estimates, based on typical parameters for the GPS orbits, given in the PhD thesis
[16].

3. To derive the signal propagation time for the more complicated case of a signal emission by
a satellite on a spatially-distributed orbit, characterized by the full set of 6 Keplerian parameters
[24]. The obtained propagation time is expressed again in terms of elliptic functions, but they
are more complicated, since are of higher order (second and fourth). This case is again not
realistic from a physical point of view, because a satellite in its orbital motion may deviate tens
and even hundreds of meters due to various disturbing forces, even solar pressure and etc. But
although not quite realistic, this method is necessary to be developed, because it constitutes
one of the basic elements in the developed in the publications [22], [23] method of intersecting
four-dimensional null cones (in terms of the coordinates T , x, y, z in the initially given null-cone
metric).

4. In the papers [22], [23] the method of intersecting null cones has been studied on the
base of the equations, which are in fact the simple version of the equations (18) - (22) from the
previous section. The most simple case of plane elliptical motion of the satellite, described by the
changing eccentric anomaly angles E1 and E2 have been chosen, and the two propagation times
T1 and T2. Although such a simplified model might be considered physically unrealistic, most
amazingly it helped us to establish some interesting physical consequences. The most important
one is that the intersection of the two null cones with the four-dimensional hyperplane defines a
distance R2

AB, which is called a space-time interval. It can be positive, negative or equal to zero.
Although initially R2

AB was defined as an Euclidean distance, this result is not amazing, because
the two null cones are notions from General Relativity Theory, where space-like and time-like
vectors (respectively, outside or inside isotropic null cones) and curves are quite natural (see ch.
4 and ch. 6 of the known monograph [26]). Since the real propagation of light or radio signals
in GRT is related to time geodesics and to large-scale distances, a new interpretation has been
given of the notion of the ”geodesic distance”- the space-time interval becomes the positive
geodesic distance, if the s.c. ”condition for inter-satellite communications” (expressed from the
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null cone equation) is substituted into the expression for the space-time interval.
There is also one direct consequence from the proposed formalism of two intersecting null

cones, which is important for the inter-satellite communications between the satellites from
the GLONASS constellation. It has been proved in [22] and [23] that the limiting value of
the eccentric anomaly angle Elim = 45.002510943228 [deg], above which (below) the space-
time interval dR2

AB becomes positive (negative) corresponds to the angular distance of 450

of disposition of the satellites from the GLONASS constellation within one plane orbit and
eccentricity of the orbit e = 0.02.

There are a number of other interesting problems, which will be commented in the conclusion
of this paper.

6. The Shapiro delay formulae in station–satellite and inter-satellite
communications - review of some basic physical facts
We shall begin with some trivial and simple examples in [27], which will help us to understand
the physical essence of the phenomena of Shapiro time delay of a signal. In the case of the trivial
metric

−g00 = 1 , g11 = g22 = g33 = 1 , gµν = 0 for µ 6= ν , µ, ν = 0, 1, 2...3 (23)

one can obtain the simple expression

ds2 = −c2(1− v2

c2
)dt2 = −c2dτ2 , (24)

which implies the time dilation of a moving atomic clock (on board of a satellite) relative to a
clock at rest. Note also that t is the time, related to the motion of the satellite (v respectively
is the velocity).

In order to obtain the Shapiro time delay, one has to introduce a gravitational potential U
in the temporal and spatial parts of the metric

−g00 = 1− 2U

c2
, g0j = 0 , gij =

(
1 +

2U

c2

)
δij , i, j = 1, 2, 3 . (25)

In other words, there is no Shapiro delay in the case of the metric (23).
Now taking into account expression (4) for the coordinate time ∆t (which is in fact also the

propagation time of the signal), it can be expressed as [7]

∆t ≈ 1

c

∫
path

√
gij
−g00

dxidxj ≈ 1

c

∫
path

(
1 +

2U

c2

)√
δijdxidxj (26)

=
ρ

c
+

1

c3

∫
path

2Udρ , (27)

where ρ is called ”geometric path”(in the thesis [16] it was called ”the slant range”) and the
second term is the Shapiro delay term. The calculation in (26)-(27) in [7] however presumed
that the second contribution 2U

c2
in g00 in the metric (25) was neglected.

This will turn out to be the correct approach, but the mathematical justification is more
evident from the calculation in [16] for the case of the metric (25)

∆t ≈ 1

c

∫
path

√
gij
−g00

dxidxj (28)
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=
1

c2

∫
path

√
1− 2U

c2

1 + 2U
c2

δijdxidxj ≈
∫
path

dρ− 1

c3

∫
path

2Udρ . (29)

The result is the same as in (27), but the sign before 1
c3

∫
path

2Udρ is negative. So if the

gravitational potential is negative, the second Shapiro delay term will increase the propagation
time, as should be. Expression (29) was derived by decomposing the under-integral expression√

1− 2U
c2

1+ 2U
c2

in the s.c. weak limit, when 2U
c2
� 1. Further the weak limit will be used in order to

obtain the new expression for the propagation time in terms of the eccentric anomaly angle E,
but the general case without using this approximation will be briefly considered. The weak-field

limit has an important physical meaning, clarified in the PhD thesis [30]: if
−→
R is a vector, related

to the signal trajectory with respect to a Earth-centered system, −→r A and −→r B are vectors, related
to the points of emission and reception of the signal and −→r = −→r A −−→r B, then the tangent line

dR to the signal trajectory
−→
R deviates from the straight line cdt by O( 1

c2
) terms. This can be

written as ‖ dr ‖=‖ dR ‖ +O( 1
c2

) and follows also from the null cone equation [30]

cdt =

(
1 + 2

G⊕ME

rc2

)
‖ dR ‖ , (30)

where G⊕ME is the s.c. geocentric gravitational constant. Further its numerical value will be
given in order to estimate numerically the Shapiro delay term. After integration, the Shapiro
delay formulae can be found

∆t = tB − tA = Trec − Temis =

RAB∫
0

(
1 + 2

G⊕ME

rc2

)
dR

c
(31)

=
RAB
c

+ 2
G⊕ME

c3
ln

(
rA + rB +RAB
rA + rB −RAB

)
(32)

=
| −→r B(tB)−−→r A(tA) |

c
+ 2

G⊕ME

c3
ln

(
rA(tA) + rB(tB) +RAB
rA(tA) + rB(tB)−RAB

)
. (33)

This is the final formulae, frequently applied in many papers, can be found also in the
review paper [31] by Sovers, Fanselow and Jacobs on V LBI radio interferometry. The
calculation is presented also in the mentioned papers [30], [16], [7], [27] and others. Note one
apparent inconsistency of the above formulae (33) - it depends on the Euclidean distance RAB
=| −→r B(tB)−−→r A(tA) |between the points of emission rA(tA) and reception rB(tB) of the signal,
which are taken at two different moments of time tA and tB. However, rB will be known after
the propagation time is calculated, so equation (33) represents a complicated transcendental
equation with respect to the reception time tB.

The Shapiro delay formulae (32) first was widely applied in the initial publications [5], [6]
and others, which were dedicated to the problem about communications between stations on
the Earth and satellites, accounting for GRT effects. Numerical estimates for the Shapiro delay
term are also known [7] - for the signal between a geostationary satellite with orbital radius
42164 km with a clock on the equator at the same longitude, the Shapiro path delay is −27 ps
(picoseconds, 1 ps = 10−9 sec). Note that the minus sign is in agreement with the minus sign
in front of the second (Shapiro) term in (29).

Later on, in the series of three publications [32], [33] and [34] a theoretical modelling has been
performed for inter-satellite communications for the purposes of the GRAIL (Gravity Recovery
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and Interior Laboratory) and the GRACE (Gravity Recovery and Climate Experiment) space
missions-each of these missions represent a system of two spacecrafts at a distance around 200
miles and orbiting around either the Earth, the Moon or Mars. Precise ranging between the
two spacecrafts in GRAIL or GRACE is achieved by applying General Relativity Theory.

7. Is it necessary to apply the light-like geodesic equations for finding the
propagation time?
In the paper [32] it was asserted that the points of emission and reception A and B are joined by
a time-like geodesics, but yet the Shapiro delay equation (33) was used and was called a ”light-
like” equation and the geodesic equation has not been used. The reason, from a theoretical
point of view, is a theorem, proved in paragraph 38 in the known monograph by Fock [28]:

Theorem: Let

L =
√

2F =

√
2

(
1

2
gαβ

dxα
dp

dxβ
dp

)
(34)

is the Lagrange function for the variational problem, when the extremum of the integral

s =

p2∫
p1

Ldp (35)

is to be found and p is a space parameter along a curved line (It should be noted that in the
proof in [28] it was not presumed that p is parameter along a geodesic line). Let also p is chosen
so that the Lagrange equation of motion is satisfied

dF

dp
= 0 =⇒ F = const =⇒ d

dp

∂F

∂
.
xα
− ∂F

∂xα
= 0 , (36)

which has the first integral

.
xα

∂F

∂
.
xα
− F = F = const ,

.
xα ≡

dxα
dp

. (37)

Then the geodesic line equations (α, β, ν = 0, 1, 2, 3)

d2xν
dp2

+ Γναβ
dxα
dp

dxβ
dp

= 0 (38)

are compatible with the null-cone equation

F = gαβ
dxα
dp

dxβ
dp

= 0 (39)

and in (38) Γναβ are the affine connection components for a given metric gαβ.

In other words, since the first integral (37) for the variational problem s =
p2∫
p1

Ldp is valid

also for the partial case F = 0, from the fulfillment of the null-cone equation (39) follows the
fulfillment of the geodesic system of equations (39).

This theorem in the monograph by Fock has a great importance for the present investigation.
If the propagation time T is found from the null-cone equation, it is not necessary to find the
propagation time from the complicated nonlinear system of equations (38). In particular, this
is the justification for choosing the parameter p not along the curved trajectory of the signal,
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but for example along the elliptic orbit of the satellite-both for the cases of plane motion of
the satellite (characterized by the eccentric anomaly angle E), motion along a space-distributed
orbit (characterized by the single parameter f - the true anomaly angle or the whole multitude
of parameters (M,a, e,Ω, I, ω), characterizing any disturbing motion.

Lastly, it should be mentioned that the relation between the null cone equation and the
geodesic equations is a topic, not very well investigated in General Relativity Theory. Some
issues will be mentioned in the conclusion part. But now one such issue can be mentioned as an
example. After the variational problem is solved and the geodesic equations (38) are obtained,
p becomes the parameter along the geodesic line. However, because of the condition F = 0 in
(39), one may choose any other parameter p1, not related to the geodesic line, i.e. one may write

F = gαβ
dxα
dp1

dxβ
dp1

= 0 as well. This is the case, which is related to the further investigation. But

F = 1 will be another integral of the system (38) and then one can write only F = gαβ
dxα
dp

dxβ
dp = 1

[29] and not gαβ
dxα
dp1

dxβ
dp1

= 0.

8. New results for the propagation time in terms of elliptic functions-signal,
emitted by a satellite on a plane elliptical orbit
8.1. The general case without any approximations
Since we have proved in the preceding section that an arbitrary parametrization of the space
coordinates in the null cone equation

ds2 = −c2
(

1 +
2V

c2

)
(dT )2 +

(
1− 2V.

c2

)(
(dx)2 + (dy)2 + (dz)2

)
= 0 (40)

can be chosen, we shall investigate the most simple example of a satellite, moving along a plane
elliptical orbit, parametrized by (5) x = a(cosE − e) , y = a .

√
1− e2 sinE , z = 0. From

the null cone equation after expressing dT , subsequent integration and taking into account, that
the satellite velocity can be expressed as

v =
√
v2
x + v2

y =
na

(1− e cosE)
.
√

1− e2 cos2E (41)

(n = .

√
G⊕M⊕
a3

is the mean motion), the propagation time can be written as [22], [24]

T =

∫
v

c
.

√
(c2 − 2V )

(c2 + 2V )
dE =

a

c

∫
.

√
a1y3 + a2y2 + a3y

b1y3 + b2y2 + b3y + b4
dy , (42)

where the numerical constants a1, a2, a3, b1, b2, b3, b4 can easily be calculated, y is the
variable y = 1 − e cosE. Integrals of the type (42) are not abelian ones (see the monograph
by Prasolov and Solovyev [35]), because abelian integrals are related to algebraic curves
F (x, y) := x2−P (y) = 0, where P (y) is an algebraic polynomial. In the case for the integral (42),
the under-integral expression is a rational function and not a polynomial. In the monograph
[36], where various analytical solutions of most complicated integrals are presented, no analytical
solutions of integrals of the type (42) can be found.

8.2. The weak field approximation 2V
c2
� 1-theoretical and numerical considerations

In the book [28] two approximations are proposed for the metric (40)

U � c2 , (43)



AMiTaNS'23
Journal of Physics: Conference Series 2675 (2023) 012026

IOP Publishing
doi:10.1088/1742-6596/2675/1/012026

13

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

= v2 � c2 (44)

so that the metric (40) differs insignificantly from the metric

ds2 = −c2
(

1 +
2V

c2

)
(dT )2 +

(
(dx)2 + (dy)2 + (dz)2

)
. (45)

However, it is not stated that the imposition of such assumptions is not absolutely necessary,
and the metric (40) is considered to be the more precise metric. From this point of view, the
problem about the calculation of the propagation time in the form of the complicated integral
(42) is correctly stated. Moreover, the inequality U

c2
� 1 is valid only to a certain approximation,

and it is important to find the precise approximation for its validity.
For the parameters of the GPS orbit - the typical radius rs = 26561 [km] of the GPS orbit,

in the review paper [37] the constant

β =
2V

c2
=

2G⊕M⊕
c2rs

� 1 (46)

β was calculated to be 0.334×10−9 [24] with the velocity of light taken to be c = 299792458 [ msec ]
and the mass of the Earth is taken approximately to be ME ≈ 5.97× 1024 [kg]. The geocentric
gravitational constant G⊕M⊕ (obtained from the analysis of laser distance measurements of

artificial Earth satellites) was taken to be equal to G⊕M⊕ = (3986004.405± 1)×108 [ m
3

sec2
]. The

value of G⊕M⊕ can vary also in another range from G⊕M⊕ = 3986056.75236× 108 [ m
3

sec2
] to the

value G⊕M⊕ = 3987999.07898 × 108 [ m
3

sec2
] due to the uncertainties in measuring the Newton

gravitational constant G⊕. One of the latest values for G⊕ from deep space experiments was

reported in the paper [38] to be (6.674 + 0.0003).10−11 [ m3

kg. sec2
].

Now let us point out one another numerical fact, which is interesting from the point of view
of the preceding result. In the book [1] it was pointed out that at an altitude of 20184 km,
due to the difference in the gravitational potential, the satellite atomic time runs faster by 45
µ sec /d (microseconds per day, 1 µ sec = 10−6 sec). Consequently, for one second the atomic
time will run faster by 0.5208333.10−9 [sec]. In the following sections it will be proved that the
dominant part in the propagation time dT (i.e. the part without the Shapiro delay term, which
is very small) will be dT = 0.0281341332790419 [sec]. The corresponding to this propagation
time interval dT atomic time is dτ = 0.0146531934.10−9 [sec] and can easily be found from 45
µ sec /d. The ratio of the two time intervals is equal to

dτ

dT
=

0.0146531934.10−9

0.0281341332790419
= 0.52083329721.10−9 . (47)

The very small atomic time interval compared to the propagation interval means that the atomic
time can serve as a standard for measuring the propagation time, because it will be able to detect
changes even at the nanosecond level.

It should be noted that this value is of the order of 10−9, but it is a little greater than the
value β = 2V

c2
= 0.334× 10−9

2V

c2r
=

2GM

c2a(1− e cosE)
=

β

(1− e cosE)
=

0.334.10−9

(1− e cosE)
� 1 . (48)

So due to the changing gravitational potential in our model (r = a(1−e cosE) and 1
(1−e cosE) > 1)

2V

c2r
> β ∼ 10−9 . (49)
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8.3. Propagation time in terms of a sum of elliptic integrals of the first, second and the third
kind in the weak field approximation
This section presents the new results in the papers [22], [24]. From the null cone equation (40)
and taking into account the weak-field approximation 2V

c2
� 1, after decomposing the expression

(29) into a sum and keeping only the first two sums, one can obtain

T =

∫
v

c
.

√
(1− 2V

c2
)

(1 + 2V
c2

)
dt ≈

∫
v

c
(1− 2V

c2
)dt = I1 + I2 (50)

=
a

c

∫
.
√

1− e2 cos2E dE − 2G⊕M⊕
c3

∫
.

√
1 + e cosE

1− e cosE
dE . (51)

The formulae in fact gives the propagation time T of the signal, emitted by the satellite at
some initial position (given by the eccentric anomaly angle Einit), and the final point (given by
Efin) of reception of the signal by another satellite.

The coefficient a
c as a ratio of the large semi-major axis of the orbit and the velocity of

light c = 299792458 [ msec ] has a dimension [m/ msec ] = [sec]. The second coefficient 2G⊕M⊕
c3

has a corresponding dimension [ m
3

sec2
: m3

sec3
] = [sec], the two integrals

∫
.
√

1− e2 cos2E and∫
.

√
1+e cosE
1−e cosEdE after the integration are numbers and represent elliptic integrals of the second

kind (first term in (51)) and a sum of elliptic integrals of the first and the third kinds respectively
(second term in (51)). The general theory of elliptic integrals and curves is given in the
monographs [35] and [43], more specific mathematical problems on a higher level are treated in
[39], [41] and [42]. Elliptic integrals of first, second and third kinds are defined in the monographs
[35], [44] and [45], but the corresponding definitions are briefly summarized also in the paper
[24]. Various approaches for analytical calculation are given in the old book [36].

Let us now express the two integrals in (51) in terms of the various types of elliptic integrals.
For the purpose, the first integral can be rewritten as

T1 =

E∫
0

.
√

1− e2 cos2EdE = −

π
2
−E∫
π
2

.
√

1− e2 sin2EdE , (52)

where it was accounted that cosE = sin(π2 − E) and also k = e < 1 (since e is the eccentricity
of the orbit) represents the modulus of the elliptic integral.. The integral (52) represents an
elliptic integral of the second kind [35].

In order to calculate the second integral T2 = −2G⊕M⊕
c3

∫
.

√
1+e cosE
1−e cosEdE in (51), let us perform

the substitution

.

√
1 + e cosE

1− e cosE
= y (53)

and introduce also the notations

−k2 = k̃2 =
1− e
1 + e

= q ,
y

k̃
= y ,

(
y

k

)2

=

(
y

k̃

)2

= ỹ , ỹ = −˜̃y . (54)

Then the integral T2 can be represented as a sum of two integrals, i.e. T2 = I
(A)
2 + I

(B)
2 . The

first integral is

I
(A)
2 =

4GM

c3

1

k̃ i .
√

1− e2 i

∫
d˜̃y

.

√ ˜̃y (˜̃y + 1
)(˜̃y + 1

k̃4

) (55)
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is of zero - order and of the first kind and is in the s.c. Weierstrass form (third-order polynomial
under the square root in the under-integral expression). The modulus of this elliptic integral

can be calculated if by a suitable linear variable transformation of ˜̃y the integral is transformed
to an integral in the s.c. Legendre form

∫
dx

.
√

(1−x2)(1−k2x2)
, associated with the elliptic curve

y2 = (1− x2)(1− k2x2) (k is the modulus of the elliptic integral).
It is important to note that the integral is a real-valued expression, because the propagation

time should be real. This fact again confirms the of the applied approach of choosing the space
coordinates parametrization to coincide with the orbit of the satellite.

The second integral I
(B)
2 in the expression for T2 = I

(A)
2 + I

(B)
2 can also be written in the

form of a real-valued expression

I
(B)
2 =

4GM

c3q2

1
.
√

1− e2

∫
dỹ

(ỹ − 1
q ) .

√
ỹ(ỹ + 1)(ỹ + 1

q2
)

. (56)

This is an elliptic integral of the third kind.

8.4. Numerical calculation of the propagation time of a signal, emitted by a satellite on a plane
elliptical orbit
8.4.1. Numerical calculation of the first six iterations of the eccentric anomaly angle E We
shall perform some numerical calculations of the propagation time, based on the derived formulae
(51). The numerical data about the parameters of the GPS orbit are taken from the PhD
dissertation [16] and are known with great precision. From all the parameters, listed below only
the first three will be used in the calculation, performed by the online program web2.0 scientific
calculator [46]

semi-major axis a 26560.25169632944 [km] ,
eccentricity e 0.01323881349526 ,
mean anomaly M −0.3134513508155 [rad] ,
inclination I 0.9614884100802 [rad] ,
longitude of the ascending node Ω −0.4495096737336 [rad] ,
argument of perigee ω −3.001488651204 [rad] .
Most important is to find the eccentric anomaly angle E from the Kepler equation M =

E − e sinE. The calculation will be based on formulaes (2.54) and (2.55) in Ch.2 of the
monograph [11].

The iterative sequence of formulaes are

E(i+1) = M + e sinE(i) , i = 0, 1, 2, ....., (57)

where for the first approximation it is assumed E0 = M = −0.3134513508155 [rad] The first
three iterative solutions are given according to the following formulaes:

E(1) = M + e sinM , (58)

E(2) = M + e sinE(1) = M + e sin(M + e sinM) , (59)

E(3) = M + e sinE(2) = M + e sin[M + e sin(M + e sinM)] . (60)

Thus from the formulaes for E(3), E(5) and E(6) the following numerical values can be found

E(3) = M + e sinE(2) = −0.31758547588467897473 [rad] , (61)

E(4) = M + e sinE(3) = −0.31758548401096719083 [rad] , (62)
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E(5) = M + e sinE(4) = −0.31758548411317083102 [rad] , (63)

E(6) = M + e sinE(5) = −0.31758548411445499592 [rad] . (64)

The approximation E(5) up to the ninth digit is identical with E(4) and E(6) up to the eleventh
digit is identical with E(5). The approximation E(6) also up to the seventh digit is identical with
E(3), given by (61). However, if the approximate value for E(3) is compared with the value for
E(6) , the coincidence is only up to the fifth digit.

It is therefore necessary to check what is the impact of the approximations in the eccentric
anomaly E on the approximations of the time of propagation of the signal.

8.4.2. Numerical calculation of the first O(1
c ) correction in the propagation time The

corresponding elliptic integral (52) of the second kind for the eccentric anomaly approximation
E(3) is

T
(E3)
1 =

E(3)∫
0

.
√

1− e2 cos2EdE = −0.317557268125933936045 . (65)

If we compare this value with the value (61) E(3) = −0.31758547588467897473 [rad] , then
it can be noted that the integration changes the value of E(3) after the fourth digit after the
decimal dot.

The same integral with E(6) as an upper integration limit is

T
(E6)
1 =

E(6)∫
0

.
√

1− e2 cos2EdE = −0.317558568963886638536 . (66)

This value is different from the value (65) after the fifth digit, so it is a better approximation.
However, if compared with E(6) = −0.317585484114454995929 [rad], the integration in (66)
changes the value of E(6) after the fourth digit after the decimal dot.

The calculation of the first O(1
c ) time correction a

cT1 for the values of the GPS orbit and for
the eccentric anomaly E(3) gives the following numerical value

a

c
T

(E3)
1 = −0.0281341332790419 [sec] . (67)

Correspondingly, the first O(1
c ) time correction a

cT
(E6)
1 for the eccentric anomaly E(6) is

a

c
T

(E6)
1 = −0.0281342485273829 [sec] . (68)

So the two O(1
c ) time corrections (67) and (68) are identical up to the sixth digit after the

decimal dot. Consequently, the important conclusion is that the eccentric anomaly at the sixth
approximation level can ensure microsecond stability of the O(1

c ) time correction. This means
also that the third approximation E(3) can be reliably used, at least at the microsecond level.

One more argument in support of the microsecond approximation is that for a satellite,
moving along circular orbit (when e = 0) the above expression acquires the form:

a

c
t
(E3)
1(circular) =

a

c
E(3) = −0.028136517830159266 [sec] = −28136.517830159266 [µ sec] . (69)

Evidently, the coordinate time for the circular orbit differs from the coordinate time for the
GPS elliptic orbit only after the fifth digit after the decimal dot.
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8.4.3. Numerical calculation of the Shapiro delay term (the O( 1
c3

) time correction) Now let us
calculate numerically the whole under-integral expression in formulae (51) for the propagation
time, taking into account the 25−th digit after the decimal dot

a

c

√
1− e2 cos2E − 2GM

c3
.

√
1 + e cosE(3)

1− e cosE(3)
= 0.0885884561709019072629880 (70)

−0.0000000000299618094618168 = 0.0885884561409400978011712 . (71)

The second Shapiro delay term contains ten zeroes after the decimal dot, so the overall result
of the calculation of both terms in (70) - (71) is changed by the Shapiro term at and after
the picosecond level (1 p sec = 10−9 sec). This result, based on the simple application of the
celestial mechanics approach in the calculation of the propagation time is interesting, if compared

with the calculations, based on the formulae (32) T = RAB
c + 2G⊕ME

c3
ln
(
rA+rB+RAB
rA+rB−RAB

)
. From

the literature it can be seen that relativistic effects on light propagation from Satellite Laser
Ranging (SLR) data are measured with an accuracy of 1 µm (1 micrometer), which corresponds
to 0.01 p sec (see also paper [47]). The relativistic observables, defined for the GRAIL mission
in [32] are also accurate to 1 µm.

Let us present one final proof for the correctness of the applied in the papers [22], [23], [24]
and [25], comparing the calculated propagation time of the signal with the celestial time tcel,
which can be calculated from M = n(t− tP ) (M is the mean anomaly with the given numerical
data), where tP is the initial time of perigee passage.

propagation time for electromagnetic signals

celestial time from Kepler equation
=

0.028117969465826976628639[sec]

37.508256148[sec]
(72)

= 0.000749647473722373770335759582 . (73)

In other words, the propagation time is 104 times greater than the celestial time, which will
mean that for this celestial time 37.5082561[sec] the satellite moves at a distance 145.125[km]
(the velocity of the satellite is taken to be vS = 3.874 [km/ sec]) and the light signal will move
at a distance 8435.3908[km].

9. New results for the propagation time in terms of elliptic functions-signal,
emitted by a satellite on a space-distributed elliptical orbit
9.1. Parametrization of the space coordinates

Now we shall investigate the more complicated case of the propagation time of a signal, emitted
by a satellite on a space distributed orbit [24]. The parametrization (with some minor differences)
can be found in nearly all books on celestial mechanics, but a particularly clear derivation is given
in the monograph [11]. Below we shall use the parametrization in the well-known monograph
[8]

x =
a(1− e2)

1 + e cos f
[cos Ω cos(ω + f)− sin Ω sin(ω + f) cos I] , (74)

y =
a(1− e2)

1 + e cos f
[sin Ω cos(ω + f) + cos Ω sin(ω + f) cos I] , (75)

z =
a(1− e2)

1 + e cos f
sin(ω + f) sin I , (76)

where r = a(1−e2)
1+e cos f is the radius-vector in the orbital plane, the angle Ω of the longitude of the

right ascension of the ascending node is the angle between the line of nodes and the direction to
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the vernal equinox, the argument of perigee (periapsis) ω is the angle within the orbital plane
from the ascending node to perigee in the direction of the satellite motion (0 ≤ ω ≤ 3600). The
angle I is the inclination of the orbit with respect to the equatorial plane and the true anomaly
f geometrically represents the angle between the line of nodes and the position vector −→r on
the orbital plane. Since the angle f is related to the motion of the satellite and all the other
parameters of the orbit do not change during the motion of the satellite, it can easily be found
that √

(dx)2 + (dy)2 + (dz)2 =
√

(vxf )2 + (vyf )2 + (vzf )2df = vfdf , (77)

where the velocity vf , associated to the true anomaly angle f is given by

vf = v =
na√

1− e2

√
1 + e2 + 2e cos f . (78)

Making use of the null cone equation (40) and also of the approximation β = 2V
c2

= 2G⊕M⊕
c2a

� 1,
one can obtain the general formulae for the propagation time in the form

T =

∫
v

c
(1− 2V

c2
)dt = T̃1 + T̃2 =

1

c

∫
vdt− 2

c3

∫
vV dt . (79)

As it will be shown, the corrections T̃1 has two parts, but the whole correction T̃2 does not
have two parts. The first part T̃1 can be written as

T̃1 =
1

c

∫
vfdf =

na

c
√

1− e2

∫ √
1 + e2 + 2e cos fdf =

na

c
√

1− e2
(T

(1)
1 + T

(2)
1 ) . (80)

It is interesting that T̃1can be analytically calculated without the use of elliptic integrals, but
also with the application of elliptic integrals.

9.2. Calculation of T
(1)
1 + T

(2)
1 without elliptic integrals

For the first case without the use of elliptic integrals, the integral T̃
(2)
1 is calculated in [24] as

T
(2)
1 = − (1 + e)

√
2

√
q
√

3e2 + 2e+ 3
ln

[( √
2m1(fb; rb) + 1

2m2(fb; rb)√
2m1(fa; ra) + 1

2m2(fa; ra)

)(
m3(fa; ra)

m3(fb; rb)

)]
(81)

and m1(f ; r), m2(f ; r), m3(f ; r) are complicated expressions, written in terms either of the initial
and final true anomaly angles fa and fb or, of the initial distance ra (at which the emission of
the signal takes place) and the final point rb of reception on the same orbit, corresponding to

the propagation time T
(2)
1 . The first expression for T

(1)
1 can be written in the same manner,

since T
(1)
1 and T

(2)
1 are calculated from the derived integral [24]

T
(1)
1 + T

(2)
1 = − i

√
q

∫ dm(
m− q2

2

)√
m− q2

2

+

∫
dm(

m+ q2

2

)√
m− q2

2

 , (82)

where the expression for T
(2)
1 is obtained after integration of the second integral in (82) and the

expression for T
(1)
1 - from the first integral in (82). The integration of both integrals is performed

by using a formulae from the monograph [36] and given also in the paper [24].
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9.3. Calculation of T̃1 by means of elliptic integrals of the second order
The integral (80) for T̃1 = na

c
√

1−e2
∫ √

1 + e2 + 2e cos fdf can be calculated by making use of

the substitution [24]

y =

√
1

q

(1 + e cosE)

(1− e cosE)
, q =

1− e
1 + e

(83)

and also of the well-known relation (11) tan f
2 =

√
1−cos f
1+cos f =

√
1+e
1−e tan E

2 from celestial mechanics

between the eccentric anomaly angle E and the true anomaly angle f [8]. Note that from the
integral (80) it is not clear that it will be an elliptic integral, this becomes clear after the
application of the convenient transformation (83).

Then we can write the integral T̃1 in the form of an elliptic integral of the second order

(because of the term y2 in the nominator), which is also of the first kind in the Legendre form

T̃1 = −2i
na

c
q

3
2

∫
y2dy√

(1− y2)(1− q2y2)
= −2i

na

c
q

3
2 J̃

(4)
2 (y; q) . (84)

Note that for this calculation with elliptic integrals, there is no need to represent T̃1 in the

form of any sum T̃1 = T̃
(1)
1 + T̃

(2)
1 . If we compare the last formulae with the formulae (80)

T̃1 = 1
c

∫
vfdf = na

c
√

1−e2 (T
(1)
1 + T

(2)
1 ) (expressed by functions, which are not elliptic), two

important conclusions can be made:

A. The elliptic integral J̃
(4)
2 (y; q) can be expressed analytically. The paper [25] is dedicated

to this problem (see the references there), and further some basic facts about a new approach
will be mentioned briefly.

B. The elliptic integral J̃
(4)
2 (y; q) is imaginary, so that the expression for the propagation time

T̃1 is real-valued, as this was proved for expressions (55) and (56). Further this fact for T̃1 shall
also be proved.

The integral J̃
(4)
2 (y; q) can also be represented as

J̃
(4)
2 (y; q) =

∫
y2dy√

(1− y2)(1− q2y2)
= − 1

q2

∫ √
1− q2 sin2 ϕdϕ+

1

q2

∫
dy√

(1− y2)(1− q2y2)
,

(85)
which can be proved very easily [24]. The first integral in (85) is an elliptic integral of the second

kind (denoted usually by E(ϕ) =
∫ √

1− q2 sin2 ϕdϕ, where y = sinϕ). So we obtain a relation

between the second-order elliptic integral J̃
(4)
2 (y; q) of the first kind in the Legendre form, the

zero-order elliptic integral of the first kind in the Legendre form J̃
(4)
0 (y; q) (the second integral

in (85)) and the elliptic integral E(ϕ). Elliptic integrals of higher order are investigated in the
monographs [35], [44] and [45], the other cited above monographs [39], [41] and [42] do not deal
with elliptic integrals of higher order, but only with mathematical problems of elliptic integrals
and curves. A short summary of the different kinds of higher-order elliptic integrals is given
in the paper [24]. For the moment, it is important to mention that the upper subscript in the

notation for J̃
(4)
2 (y; q) means that the polynomial in the denominator is of the fourth degree, the

lower subscript 2 means that the integral is of the second order. Further analogous notations
will also appear, when calculating the O( 1

c3
) part of the integral (79).
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9.4. Calculation of the second part of the integral (79) (the O( 1
c3

) time correction) by means of
elliptic integrals of the fourth order
Let us calculate the second part

T2 = − 2

c3

∫
vV dt = −2G⊕M⊕

c3

∫
vf
r
df (86)

in the integral (79). The integral now acquires the form

T2 = −2G⊕M⊕
c3

.
na

a
√

1− e2

∫
(1 + e cos f)

√
1 + 2e cos f + e2df = T

(1)
2 + T

(2)
2 , (87)

which allows to represent it as a sum of two parts T
(1)
2 + T

(2)
2 . The first integral is

T
(1)
2 = −2G⊕M⊕

c3
.

n

(1− e2)
3
2

∫ √
1 + 2e cos f + e2df = −2G⊕M⊕

c3
.

n

(1− e2)
3
2

T̃1 (88)

and is therefore equal to the previously calculated in (84) integral T̃1, multiplied by the coefficient

−2G⊕M⊕
c3

. n

(1−e2)
3
2

. The second term T
(2)
2 in the second correction T2 is

T
(2)
2 = −2G⊕M⊕

c3
.

ne

(1− e2)
3
2

∫
cos f

√
1 + 2e cos f + e2df = −2G⊕M⊕

c3
.

ne

(1− e2)
3
2

T̃
(2)
2 , (89)

where T̃
(2)
2 is the notation for the more complicated integral

T̃
(2)
2 =

∫
cos f

√
1 + 2e cos f + e2df . (90)

The whole correction T
(2)
2 is calculated in [24] to be

T
(2)
2 = −inq

5
2

2G⊕M⊕
c3

(1 + e2)J̃
(4)
2 (ỹ, q) + inq

3
2

2G⊕M⊕
c3

(1 + e2)

(1− e2)
J̃

(4)
4 (ỹ, q) , (91)

where J̃
(4)
2 (ỹ, q) is the previous integral (85) and J̃

(4)
4 (ỹ, q) is the new, fourth-order elliptic

integral

J̃
(4)
4 (ỹ, q) =

q5

i

∫
ŷ4dŷ√

(ŷ2 − 1) (1− q2ŷ2)
, (92)

written in terms of the variable ŷ = ỹ
q =

√
1+2e cos f+e2

q .

9.5. A mathematical proof for the real-valuedness of all the O(1
c ) and O( 1

c3
) time corrections

for the case of space-distributed orbits. The recurrent system of equations and finding the
second and fourth order elliptic integrals
Proving the real-valuedness of all the components of the propagation time is an important step
in proving the correctness of choosing the parametrization (74) - (76) of the space coordinates
x, y, z in terms of the six Keplerian elements (M,a, e,Ω, I, ω). For the previous case of plane
orbits the proof was performed also in [24], but for this case of space-distributed orbits the proof
will be much more complicated.
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9.5.1. Real-valuedness of the expression for T̃1 Let us begin first with the proof of the real-
valuedness of the first O(1

c ) correction (80) T̃1 = na
c
√

1−e2
∫ √

1 + e2 + 2e cos fdf [24]. From the

representation of the integral (84) T̃1 = −2inac q
3
2 J̃

(4)
2 (y; q) it follows that T̃1 will be a real-valued

expression if the second order elliptic integral J̃
(4)
2 (y; q) will turn out to be imaginary.

For the purpose, let us perform the variable change

ỹ =

√
1 + 2e cos f + e2

1 + e
=

y

1 + e
, (93)

after which the integral acquires the form

T̃1 = i
2na(1 + e)

cq
√

1− e2

∫
ỹ2dỹ√

(1− ỹ2)
(

1− ỹ2

q2

) =
2na(1 + e)

cq
√

1− e2

∫
ỹ2dỹ√

(1− ỹ2)
(
ỹ2

q2
− 1
) . (94)

Now it is evident that if T̃1 is real, then the following identification should be made

J̃
(4)
2 (ỹ,

1

q
) =

1

i

∫
ỹ2dỹ√

(1− ỹ2)
(
ỹ2

q2
− 1
) =

∫
ỹ2dỹ√

(1− ỹ2)
(

1− ỹ2

q2

) . (95)

So let us prove that the expression
(
1− ỹ2

) (
1− ỹ2

q2

)
inside the square in the denominator in

the second integral can take negative values. Respectively, then
(
1− ỹ2

) ( ỹ2
q2
− 1
)

in the first

integral will be positive and thus in both cases the elliptic integral J̃
(4)
2 (ỹ, 1

q ) will not be real-

valued. Remembering the definition for the variable change (93) and also that cos f ≤ 1, the
following series of inequalities can easily be proved

ỹ ≤ 1 , B 1− ỹ2 ≥ 0 , 1− ỹ2

q2
≥ −(1− q2)

q2
= 1− 1

q2
= − 4e

(1− e)2
. (96)

Since 1 − ỹ2

q2
can take negative values from − (1−q2)

q2
to 0 and keeping in mind the definition

q2 =
(

1−e
1+e

)2
< 1, it becomes clear that T̃1 in (94) is a real-valued expression. Let us clarify also

the statement ”the expression inside the square in the denominator can take negative values”.

It does not mean that only for values from − (1−q2)
q2

to 0 the expression for J̃
(4)
2 (ỹ, 1

q ) is

imaginary!
Let us present a more elegant and simple proof that the inequalities 96 are fulfilled. Inverting

the sign of the last inequality in (96), we obtain the inequality

ỹ2

q2
− 1 ≤ 4e

(1− e)2
, (97)

should be proved. Keeping in mind the definition for the variable ỹ2 (93) and also for q2, the
inequality (97) is transformed to

(1 + 2e cos f + e2)

(1 + e)2
− (1− e)2

(1 + e)2
≤ 4e

(1− e)2
q2 =

4e

(1 + e)2
. (98)

From here it follows

1 + 2e cos f + e2 ≤ 4e+ (1− e)2 ⇒ 2e cos f ≤ 2e , (99)
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which is fulfilled for all eccentricities e, because of the simple trigonometric inequality cos f ≤ 1
for the function cos and also because 0 < e < 1.

Returning to the defining expression (84) T̃1 = −2inac q
3
2 J̃

(4)
2 (y; q) and after having proved

that T̃1 is real-valued, it follows that J̃
(4)
2 (y; q) (and also the integral (95) for J̃

(4)
2 (ỹ, 1

q )) are also
imaginary expressions.

9.5.2. Real-valuedness of the expression for T
(2)
2 - proof by means of the recurrent system of

equations for the elliptic functions According to formulae (91), T
(2)
2 was represented as a sum of

two imaginary expressions −inq
5
2

2G⊕M⊕
c3

(1+e2)J̃
(4)
2 (ỹ, q) and also +inq

3
2

2G⊕M⊕
c3

(1+e2)
(1−e2)

J̃
(4)
4 (ỹ, q).

Since we proved that J̃
(4)
2 (ỹ, q) is an imaginary expression, it remains to prove that J̃

(4)
4 (ỹ, q) is

also an imaginary expression.
The proof now will be made in another way, by using the recurrent system of equations for

the elliptic functions (see again the monographs [35], [44] and [45]), obtained after calculating
the derivatives

d

dỹ

(√
(1− ỹ2) (1− q2ỹ2)

)
and

d

dỹ

(
ỹ
√

(1− ỹ2) (1− q2ỹ2)
)

(100)

and integrating the resulting equations from ỹ0 to ỹ1. Combining all the three equations, the

following two equations can be derived for J̃
(4)
4 (ỹ, q) and J̃

(4)
3 (ỹ, q)

J̃
(4)
4 (ỹ, q) =

1

3q2

[
ỹ
√

(1− ỹ2) (1− q2ỹ2)
]
|ỹ=ỹ1
ỹ=ỹ0

+
2(1 + q2)

3q2
J̃

(4)
2 (ỹ, q)− 1

3q2
J̃

(4)
0 (ỹ, q) , (101)

∫ √
(1− ỹ2) (1− q2ỹ2)dỹ =

2

3
J̃

(4)
0 (ỹ, q)− 1

3
(1 + q2)J̃

(4)
2 (ỹ, q) +

1

3

[
ỹ
√

(1− ỹ2) (1− q2ỹ2)
]
|ỹ=ỹ1
ỹ=ỹ0

.

(102)

In the preceding section it was proved that the integral J̃
(4)
2 (ỹ, q) is imaginary, consequently

since it enters expression (101) for J̃
(4)
4 (ỹ, q), this integral is also an imaginary one. Also, the

integral
∫ √

(1− ỹ2) (1− q2ỹ2)dỹ will also be an imaginary one, because the integral J̃
(4)
2 (ỹ, q)

enters the right-hand side of expression (102). Of course, in order to claim that the imaginary

contribution 2(1+q2)
3q2

J̃
(4)
2 (ỹ, q) in (101) does not cancel with any of the other two contributions,

one should investigate the first and the third terms in (101). Such a cancellation is not likely to
happen, but the more rigorous mathematical approach would require to investigate whether the

elliptic integral of zero-order in the Legendre form J̃
(4)
0 (ỹ, q) will be real-valued or imaginary. In

monographs on elliptic functions, which are more related to the theory of analytical functions
[48], [49], [44] such an analysis has been performed.

9.6. Real-valuedness and complex valuedness of elliptic integrals of the zero-order in the
Legendre form-basic knowledge about the Christoffel-Schwartz integral

Zero-order elliptic integrals in the Legendre form such as J
(4)
0 (y, q) =

∫ dy√
(1−y2)(1−q2y2)

are

analyzed by means of the well-known Christoffel - Schwartz integral (see especially [48], [49],
[44], [50], but also many other monographs on analytical functions)

w = f(z) = C

z∫
0

(s− a1)α1−1(s− a2)α2−1.......(s− an)αn−1ds+ C1 , (103)
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which represents a conformal mapping of the upper complex half-plane onto the inner part of an
n−polygon. In the last formulae a1,a2,......an are points on the real axis and α1, α2....αn denote
the inner angles, represented by real numbers. Each one of these numbers is not greater than 2
and for them the following equality

α1 + α2 + ....+ αn = n− 2 (104)

is fulfilled. For the four-dimensional case of the zero-order integral J
(4)
0 (y, q), formulae (103)

represents a mapping of the upper complex half-plane onto the rectangle (i.e. the 4−polygon,
which for the case turns out to be the rectangle). So the integral J(y, q) is a partial case of the
integral (103) for the following values of the parameters αn, an and the constants C1 and C:

α1 = α2 = α3 = α4 =
1

2
, a1 = −1

q
, a2 = −1 , (105)

a3 = 1 , a4 =
1

k
, C1 = 0 , C =

1

q
. (106)

Therefore, the integral J
(4)
0 (y, q) can be represented in the form of the following Christoffel-

Schwartz integral

J
(4)
0 (y, q) = f(z) =

1

q

z∫
0

(
y +

1

q

) 1
2
−1

(y + 1)
1
2
−1 (y − 1)

1
2
−1

(
y − 1

q

) 1
2
−1

dy . (107)

At the points a1,a2,a3,a4 the under-integral function in the integral J
(4)
0 (y, q) (similarly - also in

the integral (103) is a branching multi-valued function, which maps the points on the real axis
onto the points on the segments of the rectangle, situated on the complex plane. Each expression
(s− ak)αk−1 in (103) should be interpreted as the branch of the multi-valued function which on
the real axis (when z = s > ak) takes real positive values. Indeed, if s is in the segment [0, 1],
then the function f(z) in [48] takes values from zero to the value of the elliptic integral of the
first kind:

K =

1∫
0

ds
.
√

(1− s2) (1− q2s2)
. (108)

In fact, this is an equivalent formulation of the period of the elliptic integral K = F (π2 , e) =
π
2∫

0

dE
.
√

1−e2 sin2 E
. Since the function

(
1− s2

) (
1− q2s2

)
is a two-valued function at the branching

points s = ±1 and s = ±1
q , one has to choose the under-integral function so that to ensure the

non-interruptness of this function, when 1 < s < 1
q . This means that for this case it should be

written as [48]
1

±i .
√

(s2 − 1) (1− q2s2)
. (109)

Consequently, for s ⊂ [1, 1
q ] the function w = f(z) maps the interval [1, 1

q ] into the interval

[K,K + iK̃ ,] on the complex plane, where

K̃ , =

1
q∫

1

ds
.
√

(s2 − 1) (1− q2s2)
. (110)
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For s ⊂ [1, 1
q ] the function w = f(z) (107) maps the interval [1, 1

q ] into the interval [K,K + iK̃ ,]
on the complex plane, where

K̃ , =

1
q∫

1

ds
.
√

(s2 − 1) (1− q2s2)
. (111)

Then the integral in (107) can be written as:

y∫
0

ds
.
√

(1− s2) (1− q2s2)
= K + iK̃ , = (112)

=

1∫
0

ds
.
√

(1− s2) (1− q2s2)
+ i

y∫
1

ds
.
√

(s2 − 1) (1− q2s2)
. (113)

In the same way,similarly the analysis can be performed for the other intervals on the real
axis. Thus the following theorem about the Christoffel-Schwartz integral can be proved:

Theorem. The intervals [0, 1], [1, 1
q ], [1

q ,+∞) on the real axis are mapped by the Christoffel

- Schwartz integral (107) onto the rectangle with endpoints correspondingly (0, 0), (K, 0),

(K,K + iK̃ ,), (0, iK̃ ,) on the complex plane, where K̃ , is represented by the integral (111).
The first significance of this theorem is that since the mentioned points are the points of a

rectangle, it gives the opportunity to predict when the integral (107) is real-valued or imaginary.
Such an analysis will be performed in another publication.

Secondly, it may be noted that the Christoffel-Schwartz theorem is not formulated for elliptic
integrals of higher than zero order. So taking into account the results of the theorem for

the zero-order integral J̃
(4)
0 (ỹ, q) and combining the higher-order integrals (101) and (102) for

respectively the integrals J̃
(4)
4 (ỹ, q) and J̃

(4)
2 (ỹ, q) from the recurrent system of equations, it may

be established in another way whether these integrals are real-valued or complex-valued and
how the interval [0, 1], [1, 1

q ], [1
q ,+∞) is mapped by higher-order integrals. This is a problem,

not solved for the moment in the theory of elliptic functions.

10. Brief summary of a new analytical algorithm for integrating elliptic integrals
of the zeroth-order in the Legendre form
10.1. Transforming an integral in the Legendre form into an integral in the Weierstrass form

A new analytical algorithm for treatment of elliptic integrals in the Legendre form J̃
(4)
0 (y, q) =∫ dy√

(1−y2)(1−q2y2)
has been proposed in the paper [25] and the main motivation comes from the

necessity to treat elliptic integrals of higher order

J (4)
n (y) =

∫
yndy√

a0y4 + 4a1y3 + 6a2y2 + 4a3y + a4

, J (3)
n (x) =

∫
xndx√

ax3 + bx2 + cx+ d
,

(114)
widely applied in theoretical problems in various areas of physics such as relativistic treatment
of perihelion advance (see the monograph [28], but also [51]), light deflection in Schwarzschild
geometry and light trajectories around Black Holes, apparent supernova distances in cosmology,
soliton equations and nonlinear motion of the pendulum and etc. Both integrals in (114) are
of n−th order, because of the terms yn and xn in the nominators of these integrals. Below we
shall only briefly outline the new algorithm, proposed in [25].
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The algorithm is based on transforming the integral J̃
(4)
0 (y, q) in the Legendre form into the

integral J̃
(3)
0 (x, g2, g3) in the s.c.Weierstrass form, where the integrals are defined as

J̃
(4)
0 (y, q) =

∫
dy√

(1− y2)(1− q2y2)
, J̃

(3)
0 (x, g2, g3) = −

√
a

∫
dx√

4x3 − g2x− g3

(115)

and the following transformation is applied

x =
a

y2
+ b . (116)

After applying the above transformation, it is proved that if the parameters a and b are
determined as

a =
9g3

g2
K(q) , (117)

b = −a
3

(1 + q2) = −3g3

g2
K(q) , (118)

then the integrals J̃
(4)
0 (y, q) and J̃

(3)
0 (x, g2, g3) are equal. In (117) and (118) K(q) is a rational

function, depending on the modulus parameter q of the elliptic integral

K(q) ≡ q4 − q2 + 1

2q4 − 5q2 + 2
. (119)

Note that in the transformation (116) and the subsequently determined parameters (117) and
(118), no any restrictions have been imposed on the modulus of the elliptic integral q to be a
small quantity, so the analytical method is applicable to highly elliptic orbits, which are used in
modern satellite technologies. This will be mentioned also further.

10.2. Another representation of the integral in the Weierstrass form without the conformal
coefficient
The second representation is based on the s.c. theorem for ”four-dimensional uniformization”
[52], according to which an elliptic integral of the zero-order in its general four-dimensional form
and in the Legendre representation

J
(4)
0 (y) =

∫
dy√

a0y4 + 4a1y3 + 6a2y2 + 4a3y + a4

(120)

after a series of transformations (explicitly given in the paper [25], following [52]) can be brought
to the elliptic integral in the Weierstrass representation

I
(3)
0 (x) =

∫ ∞
s

dσ√
4σ3 − g2σ − g3

, (121)

where for the polynomial of the fourth degree in the Legendre form

f(y) ≡ (1− y2)(1− q2y2) = 1− (1 + q2)y2 + y4 (122)

the new Weierstrass invariants g2 and g3 can be exactly calculated [25]. From the two
representations of the integral (120)

J̃
(4)
0 (y, q) =

∫
dy√

(1− y2)(1− q2y2)
= −
√
a

∫
dx√

4x3 − g2x− g3

=

∫
dσ√

4σ3 − g2σ − g3
(123)
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the Weierstrass invariants g2 and g3 can be calculated to be

g2 = g2a
4
3 = (3K(q))4 g

4
3

g3
2

, g3 = −a2g3 = −272K(q)6 g
7
3

g6
2

, (124)

where g2 and g3 are found to be complicated polynomial functions of the modulus q of the
elliptic integral in the Legendre form [25] and K = K(q) is the rational function in terms of q,
given by the defining expression (119). We shall give the calculated expressions for g2 and g3,
calculated for the polynomial (122), making use of the formulaes in the monograph [52]

g2 = q2 +
1

12
(1 + q2)2 > 0 , g3 = −1

6
q2(1 + q2) +

(1 + q2)3

63
. (125)

Thus the Weierstrass invariants g2 and g3 (also the coefficient function a(q)) in the second
integral in (123) are known functions. In the Conclusion part of this paper and on the baseof
the theorem for ”four-dimensional uniformization”, it will be shown that an arbitrary elliptic
integral (120) of the fourth-degree polynomial a0y

4 + 4a1y
3 + 6a2y

2 + 4a3y + a4 can thus be
parametrized with a complicated function, depending on the Weierstrass elliptic function ρ(z)
and its derivative.

10.3. Application of the Weierstrass integral and of the Weierstrass elliptic curve in the

parametrizable form
Finding a solution z−z0 of the second integral in (123) in the Weierstrass form

∫
dx√

4x3−g2x−g3
is

equivalent to finding the solution of the cubic equation y2 = 4x3− g2x− g3. This ”equivalency”
can be written as [50]

z − z0 =

x∫
x0

dx√
4x3 − g2x− g3

⇔ y2 = 4x3 − g2x− g3 . (126)

The cubic curve y2 = 4x3 − g2x − g3 is called also the ”uniformization curve”, because the
functions of the complex variable z

x = ρ(z) , y = ρ
′
(z) ≡ dρ

dz
(127)

satisfy the cubic curve (126). In fact, the equality x = ρ(z) is a solution also of the elliptic
integral in (126) and this is the known problem of ”inversion” for elliptic integrals. In (127) ρ(z)
is the Weierstrass function [50]

ρ(z) ≡ 1

z2
+
∑(

1

(z − ω)2
− 1

ω2

)
=

1

z2
+
g2

20
z2 +

g3

28
z4 + ....... (128)

From the second representation for the Weierstrass function ρ(z) it becomes clear why in
the literature it is denoted by ρ(z; g2, g3).Taking into account the standard definition for the
Weierstrass invariants g2 and g3 and also the defining equalities (124), the invariants can be
represented as

g2 = 60G4 = 60
∑ ′1

ω4
= (3K(q))4 g

4
3

g3
2

, (129)

g3 = 140G6 = 140
∑ ′1

ω6
= −272 (K(q))6 g

7
3

g6
2

. (130)
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The invariants are defined as infinite convergent sums over the period ω of the two-periodic
lattice and the prime ”′” above the two sums means that the period ω = 0 is excluded from the
summation, so that the expressions would not tend to infinity.

There is also a unique mapping between the pair of Weierstrass invariants (g2, g3) and the
points z = mω1 + nω2 of the two-dimensional lattice Λ on the complex plane

Λ ≡
{
mω1 + nω2 ; 0 ≤ m ≤ 1 , 0 ≤ n ≤ 1 , Imag

(
ω1

ω2

)
> 0

}
. (131)

The following theorem, proved in Ch. 6 of the monograph by Knapp [53] allows us to understand

how the result of integration for the elliptic integral (123) J̃
(q)
0 (y) =

∫ dy√
(1−y2)(1−q2y2)

can be

represented in an analytical form by means of the Weierstrass representation. This formulae
will be explicitly written in another publication.

10.4. A theorem about the unique correspondence between the points on the two-dimensional
complex lattice and the Weierstrass invariants (g2, g3) and also between elliptic curves and
elliptic integrals in the Weierstrass form
Theorem [53] There exists an unique correspondence (g2(Λ), g3(Λ))⇔ Λ between the lattices Λ
on the complex plane C and the pair (g2, g3) of the complex numbers (the Weierstrass invariants)
such that the discriminant of the cubic polynomial 4x3− g2x− g3 is different from zero. If a, b, c
are the roots of the above polynomial, i. e.

4x3 − g2x− g3 = 4(z − a)(z − b)(z − c) , (132)

then the periods (ω1, ω2) on the complex lattice Λ (131) can be found from the following integrals

ω1 =

∫
Γ1

dz

2
√

(z − a)(z − b)(z − c)
, ω2 =

∫
Γ2

dz

2
√

(z − a)(z − b)(z − c)
. (133)

In the first integral the unique branch Γ1 of the square root is chosen with cuts from a to b and
from c to ∞ and in the second integral the branch Γ2 is with cuts from b to c and from a to ∞.

Moreover, for every lattice Λ on the complex plane, defined according to (131), a
biholomorphic mapping ϕ : C/Λ 7→ E(C), where E(C) denotes the elliptic curve y2 =
4x3 − g2(Λ)x − g3(Λ). The mapping ϕ is defined by means of the Weierstrass elliptic function
ρ(z) and the inverse mapping - by the corresponding elliptic integral.

A detailed study whether the periods (ω1, ω2) are real and imaginary depending on the roots
of the polynomial 4x3 − g2x− g3 is given in Ch. 6.5 the known monograph [48].

11. New physical and mathematical theory of the space-time interval on
intersecting null cones for the case of plane elliptical orbits
11.1. Preliminary statement of the problem and the basic system of algebraic equations
This new approach, developed first in the paper [22] and later on summarized in [23] is a logical
continuation of the approach of one null cone. In the preceding sections serious arguments were
presented in favour of the fact that one can choose a reference system of space coordinates,
parametrizing the null cone equation. In particular, numerical estimates were given which prove
the consistency of the theoretical approach with some typical experimental data, related to
satellite laser ranging.

The theoretical approach up to now was related to the problem about calculation of the
propagation time of a signal, emitted by a moving along an elliptical orbit (plane orbit or also
a space-oriented orbit) satellite. However, such an approach does not give an answer to the
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question: what is the propagation time if the signal is intercepted by a second satellite, which
is moving during the time of propagation of the signal.

Evidently, there should be some ”consistency” between the events of emission and perception
of the signal. Since these two events are treated in the framework of General Relativity
Theory, it will be quite natural to construct a new theory, based on two null cones (12)
ds2

1 = −c2
(
1 + 2V1

c2

)
(dT1)2 +

(
1− 2V1.

c2

) (
(dx1)2 + (dy1)2 + (dz1)2

)
= 0 and (13) ds2

2 =

−c2
(
1 + 2V2

c2

)
(dT2)2 +

(
1− 2V2.

c2

) (
(dx2)2 + (dy2)2 + (dz2)2

)
= 0 with origins at the signal-

emitting and signal-receiving satellite.
For the moment, we shall not be able to give an answer to the question how to calculate

the propagation time for a realistic model, when the signal-emitting- and signal-receiving
satellites move on different space-distributed orbits, experiencing also various disturbing force
and influences on the part not only of the Earth, but also the Moon, the Sun and other planets.
However, in equations (20) - (22) a preliminary generalized model was presented, based on the
dependence of the propagation times T1 and T2 on several celestial- mechanical parameters.
Evidently, such a complicated approach will be related to serious mathematical and technical
difficulties, without being sure that there will be any new physics or at least any new numerical
estimate, being related to the process of emission and reception of the signal.

That is why, the more ”idealized” approach which was used in the papers [22] and [23]
is based only on the dependence of the two propagation times only on the two eccentric
anomaly angles E1 and E2, characterizing the (independent) plane elliptical motion of the two
satellites. Naturally, the two four-dimensional null cone equations (12) and (13) in terms of
the variables dT1, dx1, dy1,dz1, dT2, dx2, dy2, dz2 are independent. They will become dependent
if they are ”intersected” by the hyper-plane equation, obtained after taking the differential
of the Euclidean distance R2

AB = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. In terms of the two-

dimensional parametrization (5) x = a(cosE − e) , y = a .
√

1− e2 sinE (now there will be two
parametrizations for (x1, y1) and (x2, y2)) this equation for dR2

AB is written as

dR2
AB = 2(x1 − x2)d(x1 − x2) + 2(y1 − y2)d(y1 − y2) . (134)

In fact, the above equation of the four-dimensional hyperplane in terms of the variables
dx1, dx2, dy1, dy2 is a simplified version of the more general hyper-plane equation (22), written
in terms of 14 variables.

Our further purpose will be to solve the system of equations (12), (13) and (134) in terms of
the parametrization (5), to find a resulting algebraic equation with respect to dR2

AB and to solve
it as a differential equation in full derivatives with respect to the two set of parameters (e1, E1)
and (e2, E2). The solution for R2

AB will allow us to make important physical conclusions.

11.2. Finding the solution of the system of algebraic equations
In the paper [22] it has been proved that combining the equations (12), (13) and (134), one can
obtain the following differential equation with respect to dR2

AB

dR2
AB = F1(E1, E2)dE1 + F2(E1, E2)dE2 , (135)

where F1(E1, E2) and F2(E1, E2) are the expressions

F1(E1, E2) := 2e1a
2
1 (1− e1 cosE1) sinE1 − S1(E1, E2) , (136)

F2(E1, E2) = 2e2a
2
2 (1− e2 cosE2) sinE1 − S2(E1, E2) (137)

and S1(E1, E2) is the expression

S1(E1, E2) := −2[a1a2
.

√
(1− e2

1)(1− e2
2) sinE2 cosE1+
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+a1a2 sinE1 cosE2 − e2a1a2 sinE1] . (138)

The expression for S2(E1, E2) is the same as S1(E1, E2), but with interchanged E1 ⇐⇒ E2, i.e.
S2(E1, E2) = S1(E2, E1). Since equation (135) is a differential equation in full derivatives, the
following differential equations follow

F1(E1, E2) =
∂R2

AB

∂E1
, F2(E1, E2) =

∂R2
AB

∂E2
. (139)

If the first equation is integrated then

R2
AB =

∫
F1(E1, E2)dE1 + ϕ(E2) = (140)

= −2e1a
2
1 cosE1 +

1

2
e2

1a
2
1 cos(2E1)+

+2a1a2
.

√(
1− e2

1

) (
1− e2

2

)
sinE1 sinE2−

−2a1a2 cosE1 cosE2 + 2e2a1a2 cosE1 + ϕ(E2) , (141)

where ϕ(E2) is a function, which has to be determined from the second equation F2(E1, E2) =
∂R2

AB
∂E2

in (139). If from (141) the derivative
∂R2

AB
∂E2

is calculated and then is set up equal to

F2(E1, E2) given by expression (137), the following simple differential equation for ϕ(E2) can
be obtained

∂ϕ(E2)

∂E2
=
(
2e2a

2
2 − 2e1a1a

.
2

)
sinE2 − e2

2a
2
2 sin(2E2) . (142)

If the equation is integrated and the result is substituted into (141), then the final expression
for R2

AB is obtained

R̂2
AB =

(
−2e1a

2
1 cosE1 − 2e2a

2
2 cosE2

)
+

+ (2e2a1a2 cosE1 + 2e1a1a
.
2 cosE2) +

+
1

2

(
e2

1a
2
1 cos (2E1) + e2

2a
2.
2 cos (2E2)

)
− 2a1a2 cosE1 cosE2+

+2a1a2
.

√(
1− e2

1

) (
1− e2

2

)
sinE1 sinE2 . (143)

Note that this expression is symmetrical and does not change under interchange of the indices
1 and 2, as it should be. In the next section it will be explained why the result of integration is
denoted in (143) as R̂2

AB instead of keeping the original notation R2
AB.

12. New physical consequences from the other expression for the Euclidean
distance:space-time interval, condition for inter-satellite communications and
geodesic distance
12.1. Euclidean distance and space-time interval-comparison between the corresponding
formulaes and physical meaning of the space-time interval (distance)
The first important observation which can be made is that the expression (143) for R2

AB is that
it is different from the expression for the Euclidean distance R2

AB = (x1 − x2)2 + (y1 − y2)2

R2
AB = [(a1 cosE1 − a2 cosE2) + (a2e2 − a1e1)]2 +

+

[
a1

.

√
1− e2

1 sinE1 − a2
.

√
1− e2

2 sinE2

]2

. (144)
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written in terms of the two-dimensional elliptic coordinates (5). It is easily seen that when
E1 = E2, a1 = a2 and e1 = e2 (the case of coinciding points x1 = x2 and y1 = y2), the Euclidean

distance RAB (144) is equal to zero, but the distance R̂2
AB (143) is not equal to zero. In other

words, for e1 = e2 = e, a1 = a2 = a, E1 = E2 = E the expression (143) for R̂
2

AB becomes equal
to

R̂
2

AB = 4a2 sin2E.(1− e2) + a2(e2 − 2) . (145)

Now it is interesting to note that R̂
2

AB is positive for

sin2E ≥ 2− e2

4(1− e2)
, (146)

but for

sin2E ≤ 2− e2

4(1− e2)
(147)

the expression (145) for R̂
2

AB is negative. It can be also equal to zero for

sin2E =
2− e2

4(1− e2)
. (148)

Consequently, (145) for R̂
2

AB possesses the characteristics of the space-time interval, which is a
typical notion for Special and General Relativity. That is the reason why in (143) the notation

R̂2
AB was introduced, in order to distinguish the space-time distance R̂2

AB from the Euclidean
distance R2

AB.

Thus, there is no any mistake in obtaining the formulae (143) for R̂2
AB, since it was derived

from the intersection of the two four-dimensional null cones (12), (13) with the hyperplane
equation (134). Thus, from a theoretical point of view a new result has been obtained -
the intersection of the two null-cones (the null-cone equations are a partial case of the space-
time interval) with the hyper-plane equation gives a space-time interval, which can be positive,
negative or equal to zero.

12.2. The compatibility condition for inters-satellite communications - definition from a
physical and mathematical point of view
From a physical point of view, it is clear that the space-time distance cannot be related to
the physical process of signal propagation, because any signal (light, radio) propagates along a
large-scale distance, which is of course only positive.

On the other hand, relation (143) for R̂2
AB was obtained from a set of equations, which

included also the defining equation for the Euclidean distance R2
AB = (x1 − x2)2 + (y1 − y2)2.

Therefore, it seems natural to ask whether the propagation of a signal takes place when the
large-scale Euclidean distance is compatible with the space-time interval (143). The equality of
the two expressions (143) and (144) is possible when the following equation is fulfilled

4a1a2
.

√(
1− e2

1

) (
1− e2

2

)
sinE1 sinE2 =

= a2
1 + a2

2 + (a2e2 − a1e1)2 − 1

2

(
e2

1a
2
1 + e2

2a
2
2

)
. (149)

The above equality shall be conditionally called ”the compatibility condition for inter-satellite

communications”. The earlier established equality (148) sin2E = 2−e2
4(1−e2)

for the partial case
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e1 = e2 = e, a1 = a2 = a, E1 = E2 = E is a consequence of the above equality. The limiting
value Elim, for which the equality (148) is fulfilled is

Elim = arcsin

[
1

2

√
2− e2

1− e2

]
=

= 45.002510943228 [deg] = 0.785441987624 [rad] , (150)

which is calculated for the eccentricity of the GPS orbit e = 0.01323881349526. Note also that
Elim does not depend on the large semi-major axis a of the orbit.

12.3. Consistency of the positivity of the space-time interval with the value for Elim from the
compatibility condition
The space-time interval (143) for equal eccentricities and semi-major axis, but for different
eccentric anomaly angles E1 6= E2 can be written as

R̂2
AB = e2a2 − e2a2(sinE1 + sinE2)2−

−2a2 cos(E1 + E2) . (151)

The space- time interval will be positive (i.e. R̂2
AB > 0), if the following inequality is satisfied

e2 − e2(sin2E1 + sin2E2)+

+2(1− e2) sinE1 sinE2 > 2 cosE1 cosE2 . (152)

If we take into account the standard inequalities for the cos-function

cosE1 ≤ 1 , cosE2 ≤ 1 (153)

and also the simple trigonometric relations sin2E1 = 1 − cos2E1, sin2E2 = 1 − cos2E2, then
the first two terms on the first line of the above inequality can be written as

e2 − e2(sin2E1 + sin2E2) =

= e2 cos2E1 − e2 + e2 cos2E2 ≤ e2 − e2 + e2 = e2 . (154)

Substituting into inequality (152), it can be derived

2 cosE1 cosE2 < e2 + 2 sinE1 sinE2 , (155)

which can be represented also as

cos(E1 + E2) <
e2

2
=⇒ E1 + E2 > arccos(

e2

2
) . (156)

For the typical value of the eccentricity e = 0.01323881349526 of the GPS orbit, it can be
obtained

E1 + E2 > 89.994978993712 [deg] . (157)

Note that the sign is greater because cos is a decreasing function with the increase of the angle
(in the first quadrant). For the third and the fourth quadrant cos is an increasing function and
the sign should be the reverse one.
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If one sets up E1 = E2 = E in (156), then

sin2E >
1

2
(1− e2

2
) =⇒ E > E = arcsin

√
2− e2

2
, (158)

where the numerical result for E is twice as smaller than the value 89.994978993712 [deg] in
(157)

E = 44.997489496856 [deg] . (159)

It should be clarified that this numerical value is a little lower that the limiting value Elim =
45.002510943228 [deg] (150). So it may seem that in the interval E < E < Elim the space-time
interval (143) is negative, but yet the space-time interval (154) in terms of the two eccentric
anomaly angles E1 and E2will be positive, consequently E > E = 44.997489496856 [deg] (158)
and (159) will be fulfilled. This would have been a contradiction, but this is not the case. The
compatibility limiting value Elim is an exact result, while trigonometric approximations are used
for derivation of the inequalities (157) and (158).

12.4. Restriction on the ellipticity of the orbit. Consequences for the RadioAstron space project
and for satellites on large elliptical orbits
Since sinE ≤ 1, one should have also the inequality

sinE =
1

2
.

√
(2− e2)

(1− e2)
≤ 1 , (160)

which is fulfilled for

e2 ≤ 2

3
or e ≤ 0.816496580927726 . (161)

Surprisingly, highly eccentric orbits (i.e. with the ratio e =
.√a2−b2
a tending to one, where

a and b are the great and small axis of the ellipse) are not favourable for inter-satellite
communications. For GPS satellites which have very low eccentricity orbits (of the order
0.01) and for communication satellites on circular orbits (e = 0), inter-satellite communications
between moving satellites can be practically achieved. For the first time the above calculation
shows that such communications depend on the eccentricity of the orbit, which should be
experimentally checked.

Another example can be given with the RadioAstron space mission (a system of an Earth
based radio-telescope and a moving near-Earth space antenna) with a large semi-major axis
of a ≈ 2 × 108 m with a variable orbital eccentricity ranging from e = 0.59 to the large
value e = 0.966, which is higher than the value 0.816496580927726. So from the theory
developed in this paper and also in the papers [22] and [23] it will follow that for eccentricity
in the interval 0.59 < e < 0.816, inter-satellite communications of RadioAstron with another
satellites on the same orbit will be possible, but this will not be possible for eccentricities in
the interval 0.816 < e < 0.966. We should stress that this result is not applicable for the radio
communications between the Earth-based radio telescope and the satellite on orbit, but only for
the satellites on highly elliptic plane orbits.

In view of the restriction on the ellipticity of the orbit, it is perhaps interesting to mention
that the traditional methods for autonomous navigation inter-satellite orientation (and ranging),
which are occasionally suited for nearly circular orbits (and with small eccentricity), are
inapplicable and limited when spacecrafts on large elliptical orbits are considered [54]. The
reason is that large elliptical orbit satellites (such as SBIRS of the USA and the Russian Molniya
series of communication satellites) operate slowly in apogee and operate quickly when passing
the perigee, so navigational methods typical for GPS cannot be used. Although the analysis
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in the monograph of Liu [54] is purely classical, it would be interesting to include the General
Relativity methods. It should be reminded again that GPS satellites (also the GLONASS
satellites) are very-low eccentricity orbits.

12.5. New results:the notion of the geodesic distance from the compatibility condition and the
space-time interval
If the compatibility condition (149) is substituted into the expression (143) for the space-time
interval, the following expression is obtained

R̃2
AB =

1

2
(a2

1 + a2
2) +

1

2
(a2e2 − a1e1)2 +

1

4

(
a2

1e
2
1 + a2

2e
2
2

)
−

−
(
2e1a

2
1 cosE1 + 2e2a

2
2 cosE2

)
−

−
(
e2

1a
2
1 sin2E1 + e2

2a
2
2 sin2E2

)
− 2a1a2 cosE1 cosE2+

+2a1a2 (e2 cosE1 + e1 cosE2) . (162)

The distance R̃2
AB is called the ”geodesic distance” and it is different from the space-time

distance (interval) (143) and from the Euclidean distance (144). In order to understand why

R̃2
AB is called a geodesic distance, let us find the difference between the square of the geodesic

distance and the Euclidean distance

R2
AB − R̃2

AB =
1

2
(a2

1 + a2
2)− e1e2a1a2+

+
1

4
(a2

1e
2
1 + a2

2e
2
2)− 2a1a2

.

√(
1− e2

1

) (
1− e2

2

)
. (163)

12.6. Equality to zero of the geodesic distance when the compatibility condition is fulfilled-the
case of equal eccentricities, eccentric anomaly angles and semi-major axis
For the case e1 = e2 = e, a1 = a2 = a, E1 = E2 = E the geodesic distance (162) acquires the
form

R̃2
AB = −a2 +

1

2
a2e2 + 2a2(1− e2) sin2E . (164)

This expression becomes equal to zero for this value of Elim, for which the compatibility condition

(149) is fulfilled, i.e. sin2E = sin2Elim = 1
4

(2−e2)
(1−e2 . It is easy to check that for this value of Elim

the space-time interval (145) R̂
2

AB = 4a2 sin2E.(1 − e2) + a2(e2 − 2) is also equal to zero.
Consequently, for this simplest case the geodesic distance is compatible with the space-time
distance.

12.7. Geodesic distance greater than the (non-zero) Euclidean distance - the case of equal
eccentricities and semi-major axis, but different eccentric anomaly angles
It is instructive to compare the non-zero Euclidean distance (given by 144 for e1 = e2 = e and
a1 = a2 = a, but for E1 6= E2) and to compare it with the geodesic distance (162). Now it

can be noted however that the difference R2
AB− R̃2

AB in (163) does not depend on the eccentric
anomaly angles. So for e1 = e2 = e and for a1 = a2 = a one can represent (163) as

R̃AB =

√
R2
AB + a2(1− 3

2
e2) . (165)
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Taking into account the restriction (161) e2 ≤ 2
3 on the value of the ellipticity of the orbit, the

second term under the square root in (165) is positive. Due to this

R̃AB ≥ RAB , (166)

which means that the geodesic distance, travelled by the signal is greater than the Euclidean
distance. Importantly, it may be concluded also that we established the same physical meaning
of the geodesic distance, but following a different ”logical” sequence of definitions, which have
nothing to do with any null geodesic distance. The geodesic distance R̃AB is in fact a distance,
defined on the intersection of two algebraic varieties (two four-dimensional null cones) with

a hyper-plane equation. Let us remind also that first the space-time interval R̂
2

AB (143) was
defined as a solution of a system of three algebraic equations, then it was required the space-time
interval to be compatible with the Euclidean distance RAB (144)- as a result the compatibility

condition (149) was obtained and finally-the geodesic distance R̃AB (162) was derived.

Since the important property of the geodesic distance R̃AB to be greater than the Euclidean
distance is proved for some partial cases, it remains to prove it for the general case of different
eccentricities, semi-major axis and eccentric anomaly angles. If this happens to be the case, the
consistency of the formalism will be proved.

12.8. Geodesic distance greater than the (non-zero) Euclidean distance - the general case of
different eccentricities, semi-major axis and eccentric anomaly angles
In order to perform the proof, let us write the condition for inter-satellite communications (149)
(also called ”compatibility condition”) in the form

sinE1 sinE2 = p =
P1(e1, a1; e2, a2)

Q1(e1, a1; e2, a2)
, (167)

where P1(e1, a1; e2, a2) and Q1(e1, a1; e2, a2) for given values of the two eccentricities e1, e2 and
the semi-major axis a1, a2 are the numerical parameters

P1(e1, a1; e2, a2) := a2
1 + a2

2 + (a2e2 − a1e1)2 − 1

2
(e2

1a
2
1 + e2

2a
2
2) , (168)

Q1(e1, a1; e2, a2) := 4a1a2

√
(1− e2

1)(1− e2
2) . (169)

Since
sinE1 sinE2 ≤ 1 , (170)

from the preceding relations (167) - (170) it can be obtained

−1

2
(a2

1 + a2
2) + a1a2e1e2 ≥

≥ −1

4
(e2

1a
2
1 + e2

2a
2
2) +

1

2
(e2

1a
2
1 + e2

2a
2
2)

−2a1a2

√
(1− e2

1)(1− e2
2) . (171)

Substituting the terms in the left-hand side of the above inequality in the expression (163) for

R̃2
AB −R2

AB (we change the sign in both sides of the inequality), it can be obtained

R̃2
AB −R2

AB ≥ −
1

4
(e2

1a
2
1 + e2

2a
2
2) +

1

2
(e2

1a
2
1 + e2

2a
2
2)
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−2a1a2

√
(1− e2

1)(1− e2
2)− 1

4
(e2

1a
2
1 + e2

2a
2
2)

+2a1a2

√
(1− e2

1)(1− e2
2) . (172)

All the terms in the right-hand side of the above inequality cancel, so one obtains for this
case again the inequality (166) R̃AB ≥ RAB. So again, in analogy with the previous partial case

(165), when R̃AB =
√
R2
AB + a2(1− 3

2e
2) was fulfilled and in the framework of the two null cones

formalism, the geodesic distance retains its property of being greater than the Euclidean distance.

Similar was the case with the Shapiro delay formulae (32) ∆t = RAB
c + 2G⊕ME

c3
ln
(
rA+rB+RAB
rA+rB−RAB

)
.

13. Algebraic treatment of the space-time interval and the geodesic distance
13.1. Zero space-time interval from non-zero Euclidean distance - analysis of fourth-order
algebraic equations by means of higher algebra theorems
Now we shall explore the problem when the space-time interval can be zero for the case of
non-zero Euclidean distance. For the purpose, expression (151) for the case of equal to zero

space-time interval R̂2
AB = 0 can be written as

2

√
(1− sin2E1)(1− sin2E2) =

= e2 − e2(sin2E1 + sin2E2) + 2(1− e2) sinE1 sinE2 . (173)

After some transformations and introducing the notation sin2E1 = y, the above expression can
be presented in the form of a quartic (fourth-degree) algebraic equation

y4 + a1y
3 + a2y

2 + a3y + a4 = 0 . (174)

The coefficient functions of this equation are given in Appendix C of the paper [22].
Consequently, the problem about finding those values of the eccentric anomaly angle E1 for
which the space-time interval (151) is zero is equivalent to the algebraic problem of finding all the
roots of the above fourth-order algebraic equation, which are within the circle | y |=| sin2E1 |< 1
(we exclude the boundary points y = sin2E1 = 1). It is well-known that an algebraic equation
of fourth degree will always possess roots. The problem is that these roots should be within the
circle | y |< 1. This is a well-known problem in algebra theory and is treated by the well-known
Schur theorem. It is interesting to mention that the theorem was published yet in the 1918 year
[56] and is mentioned also in most textbooks on higher algebra.

13.2. The Schur theorem from algebra theory for the roots of an n−th degree polynomial within
the circle | y |< 1
Below we present the formulation of the Schur theorem, which can be found in the monograph
by Nikola Obreshkoff [55] and also in the paper [22]. In Appendix B of this paper the proof of
the theorem is given, also taken from the cited monograph. The formulation of the theory is
presented also in the paper [23].

Theorem (Schur) The necessary and sufficient conditions for the polynomial of n−th degree

f(y) = a0y
n + a1y

n−1 + ....+ an−2y
2 + an−1y + an (175)

to have roots only in the circle | y |< 1 are the following ones:
1. The fulfillment of the inequality

| a0 |>| an | . (176)
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2. The roots of the polynomial of the (n− 1)−th degree

f1(y) =
1

y
[a0f(y)− anf∗(y)] (177)

should be contained in the circle | y |< 1, where f∗(y) is the s.c. ”inverse polynomial”, defined
as

f∗(y) = ynf(
1

y
) = any

n + an−1y
n−1 + ....+ a2y

2 + a1y + a0 . (178)

In case of fulfillment of the inverse inequality

| a0 |<| an | (179)

the (n− 1) degree polynomial f1(y) (again with the requirement the roots to remain within the
circle | y |< 1) is given by the expression

f1(y) = anf(y)− a0f
∗(y) . (180)

Concerning the necessary conditions, the Schur theorem has one another advantage - if the
condition (177) (or (180)) about the roots of the polynomial f1(y) is not fulfilled, then the
polynomial f(y) will not have any roots within the circle. This allows to apply the theorem not
only with respect to the space-time interval algebraic equation (which is proved to have roots
in Appendix C of the paper [22]), but also with respect to the geodesic equation, which should
not have any roots within the circle | y |< 1 (this is proved in Appendix E of the paper [22]).
The last fact may be confirmed by independent calculations, since it has been already proved
that the geodesic distance is greater than the Euclidean distance, so it cannot become equal to
zero. This is fully consistent from a physical point of view, since the light or signal propagation
is related to the geodesic distance and not to the space-time interval, which can be equal to zero
or even become negative. In this aspect, it is really amazing how the physical interpretation is
consistent with the mathematical results about these two algebraic equations.

It is important to mention that these conclusions are valid in view of the fact that the
eccentricity e is very small (in celestial mechanics, it is of the order of 0.01), and on the base of
this it is possible to compare terms with inverse powers in e in the corresponding inequalities -
the higher inverse powers in e will lead to a larger number. For example, a term of the order of
1
e2

will give a number of the order of 10000, but as it was shown, there will be terms proportional

to 1
e10

, 1
e12

and even 1
e14

, which are extremely large numbers. It is important that terms which
differ by two orders in inverse powers of e will have greatly different numerical values.

13.3. The general strategy for using the Schur theorem - the ”chain” of lower-degree
polynomials
The basic fact which is a consequence of the Schur theorem and which shall be used further in
the proof is that the polynomial of the (n− 1) degree (177) or (180) is a sufficient condition for
the existence of roots within the unit circle of the initial polynomial of n−th degree. But then,
if a new polynomial of (n− 2) degree is constructed according to formulaes (177) or (180), then
this polynomial can become a sufficient condition for the roots of the (n−1) degree polynomial.
In such a way, a chain of lower-degree polynomials is constructed - each polynomial represents
a necessary and at the same time a sufficient condition for the construction of a lower degree
polynomial. The last constructed polynomial will be of first order, and from it the condition
for the roots to be contained in the unit circle can easily be found. Note the important role
of the necessary and sufficient condition - if from the linear polynomial the condition for the
roots is found, then it will be a sufficient condition for the second-order polynomial, further this
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polynomial will be a necessary and sufficient condition for the third-order polynomial and etc.
In such a way, the first-order polynomial will turn out to be a sufficient condition for the roots
to remain within the unit circle with respect to the initial n-th degree polynomial, provided
also that for each polynomial the corresponding inequalities between the coefficient functions
are fulfilled. It can be claimed that this ”chain” of lower-degree polynomials, together with
the corresponding inequalities between the coefficient functions, represents a modified version
of the Schur theorem. So from the point of view of pure mathematics, such a modified version
of the Schur theorem without any doubt is interesting, the peculiar moment is that the physical
information (availability of roots with respect to the space - time equation and absence of any
roots with respect to the geodesic equation) is very important for the proof of such a modified
version of the theorem. Of course, the proof is limited for the investigated case of polynomials
of fourth degree.

13.4. Some consistent numerical checks, confirming the approach
Now let us discuss some numerical relations, following from the equation for the zero space-time
interval (173), which in Appendix C of the paper [22] on the base of the Schur theorem and the
”chain” of algebraic equations is proved to have roots within the interval

15.64[deg] < E1 < 56.88[deg] , 15.64[deg] < E2 < 56.88[deg] (181)

If the two inequalities are summed up, then one can obtain

31.28[deg] < E1 + E2 < 113.76[deg] . (182)

Importantly, the earlier found restriction (157) E1 +E2 > 89.994978993712 [deg] falls within the
range of the inequality (182). This is a confirmation of the correctness of the formalism, because
(157) was obtained on the base of trigonometric estimates, having nothing to do with searching

the roots of the cubic equation. The value (150) for Elim = arcsin
[

1
2

√
2−e2
1−e2

]
= 45.002510943228

[deg] from the condition (149) for inter-satellite communications is also compatible with the
inequality (182), which is a second confirmation about the correctness of the approach and the
performed calculations.

There is also a third interesting numerical confirmation. From the inequality (170)
sinE1 sinE2 ≤ 1, represented now in the form sinE2 = p

sinE1
< 1 and representing the condition

for inter-satellite communications (see equations (171) - (172)) we can write E1 > arcsin p =
30.002899 [deg], which turns out to be higher than the lower bound in 15.64 [deg] < E1 < 56.88
[deg] (181). Consequently, there is an interval

15.64 [deg] < E1 < 30.002899 [deg] , (183)

where the space-time interval can exist (and can have zeroes) but the condition for inter-satellite
communications and the resulting from it geodesic distance equation (162) cannot be defined.
This confirms the conclusion that the space-time distance is a more broader notion and has a
more general meaning in comparison with the Euclidean distance and the geodesic distance.
This also means that the notion of space-time distance can be defined independently from the
geodesic distance.

In this review paper we shall not treat the other case of the geodesic algebraic equation,
which is also a fourth - degree algebraic equation and which is treated in details in the paper
[22]. The important property of the geodesic distance R̃2

AB to be greater than the Euclidean
distance, if ”translated” into the algebraic terminology, means that the algebraic equation does
not have any roots within the circle | y |< 1. This turns out to be the case.
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14. Conclusion
In this paper a new generalized model of the Shapiro delay formulae is presented, which is based
on the null cone equations formalism in General Relativity Theory. The paper summarizes the
new approaches, proposed in several other previous papers [22], [23], [24] and [25], but at some
places new mathematical proofs are added, also some supplementary theorems, which prove
the correctness of the applied theoretical approach - this is for example the theorem about the
compatibility of the null cone equation with the null geodesic equations, proved in the known
General Relativity monograph [28]. Chronologically, the first developed approach was the s.c.
”two null cones intersecting formalism” [22], [23] and afterwards the formalism of calculating
the propagation time of a signal, emitted by a satellite moving along a space-distributed orbit
was proposed in [24]. So the future development of this theory will be 1. to put together
all these separate elements in the theory in [24] in the generalizing formalism of the ”two
null intersecting four-dimensional cones”, developed in [22], [23]. 2. Since some consistency
arguments have been added (the theorem from [28]) and also some numerical estimates that
the approach of parametrizing the space coordinates in the null cone equations in terms of the
coordinates of the elliptic orbit of the satellite is consistent, at the beginning of this paper some
basic facts have been added, concerning the disturbed motion in celestial mechanics. Also, for
the first time the two null cone equations were presented for the most general case of the six
Keplerian parameters, parametrizing the orbit of the satellite. This is the formalism, which shall
be developed in subsequent papers.

Let us formulate briefly the general purpose of the formalism, which is difficult to develop
to a full extent, because knowledge from several areas of physics and mathematics needs to be
combined: celestial mechanics, General Relativity theory, theory of elliptic curves and elliptic
integrals (including elliptic integrals of higher order), algebraic geometry and especially the
theory of intersection of algebraic varieties, theory of analytical functions (Christoffel-Schwartz
theorem and any possibilities for practical applications to higher-order elliptic integrals, not
just for the zero-order elliptic integrals, for which it is valid). So the general purpose of the
formalism is: to describe analytically and numerically the processes of signal exchange (of
course, with account of GR effects) between moving satellites on one orbit or on different
space-distributed orbits, possibly also taking into account disturbing effects in the motion.
In fact, such a research programm requires the incorporation into the formalism of the basic
approaches: 1. Finding the propagation times for the signal for different kinds of orbit of
the satellites - plane elliptic, space-distributed and orbits, on which act the s.c. ”disturbing
forces”. 2. Calculating the propagation times T1 and T2, which are correspondingly the ”signal-
emitting” propagation time T1 and the ”signal-receiving” propagation time T2 in the two null-
cone equations (12) ds2

1 = −c2
(
1 + 2V1

c2

)
(dT1)2 +

(
1− 2V1.

c2

) (
(dx1)2 + (dy1)2 + (dz1)2

)
= 0 and

(13) ds2
2 = −c2

(
1 + 2V2

c2

)
(dT2)2 +

(
1− 2V2.

c2

) (
(dx2)2 + (dy2)2 + (dz2)2

)
= 0. Let us note that

orbits of the two satellites may have different characteristics and parametrizations - for example,
the second null-cone equation might be replaced by the null cone equation, derived from a metric
in a rotating frame around the Earth [5]

0 = −ds2 = −(1−
ω2
Er

2

c2
)(cdT )2 + 2ω2

Er
2dφdT +

[
(dr)2 + (rdφ)2 + (dz)2

]
, (184)

where ωE is the uniform rotating angular velocity of the Earth. Such a case is not investigated
in the cited publications [22], [23], [24] and [25], since this is not related to the problem about
inter-satellite communications. But in principle, such a problem can be investigated.

2. Further, applying the formalism of ”two intersecting null cones” [22], [23], the equations

for the space-time interval R̂AB (143), for the geodesic distance R̃AB (162) and the so called
”compatibility condition for inter-satellite communications” (149) can be defined. One of the
important conclusions in the papers [22], [23] is related to the clarification of the properties of
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these three equations and also the fact that these important physical notions appear in a strictly
determined sequential order. Namely, after solving the two null cone equations, intersected by
the hyper-plane equation dR2

AB = (x1 − x2)2 + (y1 − y2)2 (for the two-dimensional case of a

plane orbit, solved in the cited papers), the formulae for the space-time interval R̂AB (143) was
obtained in terms of the variables a1, a2, e1, e2, E1, E2 and after comparing it with the Euclidean
distance R2

AB (144), it became clear that R̂AB can be positive, negative or equal to zero.
Note that the variables E1 and E2 are related to the motion of the satellite- for some other
parametrizations of the space coordinates they will be another. Further, it was required that
the space-time interval is comparable to the Euclidean distance and thus, the compatibility
condition (149) was obtained. Then, if the compatible condition is substituted back into the

formulae for the space-time interval R̂AB (143), the geodesic distance (162) R̃2
AB was obtained

and it was proved that it is strictly positive for all the partial and also for the general case. This
positivity for all the cases is one of the strongest arguments in favour of the consistency of the
formalism.

All these facts, established in the papers [22], [23] can serve as a starting point for applying
the approach of ”two intersecting null cones” in another setting, meaning for more complicated
and realistic situations. In other words, it is important to prove all these properties for the
space-time interval and the geodesic distance for other cases -for example, for the case of the
space-distributed orbits, when the more general parametrization of the space coordinates (74) -
(76) [8] has been used. This more general case may be subdivided into two cases: case A. The
variable, related to the motion of the satellite is the true anomaly angle f - respectively, in the
framework of the two null cone formalism, instead of E1, E2 the changing variables will be f1 and
f2. case B. The whole entity of parameters (M,a, e,Ω, I, ω) is changing. This corresponds to
the case when a signal is being send by a satellite on a space-distributed orbit with parameters
(M1, a1, e1,Ω1, I1, ω1) and the orbit is ”deformed” to an orbit (M2, a2, e2,Ω2, I2, ω2), where the
signal-receiving satellite is situated and during the propagation time of travel of the signal,
the second satellite is also moving. So for this case, the two null cones formalism displays a
”consistency” in the events of emission and reception, but on the level of General Relativity
(since two null cone equations are used) and also on the classical ”celestial mechanics level”
(because of the parametrizations in terms of the space coordinates of the satellites on the two

elliptic orbits). We remind that here the mean anomaly M = n(t− tper) (where n =
√

G⊕M⊕
a3

is

the mean motion) is related to the true anomaly angle f and to the eccentric anomaly angle E
(see formulae (11)).

14.1. Proposals for further development of the approach, based on elliptic integrals of higher
order, the recurrent system of equations for higher order integrals and some new analytical
algorithms for calculation of elliptic integrals of zero-order in the Legendre form
As a first step in this direction, one may use the calculated propagation times in terms of
the higher order elliptic integrals for the case of the parametrization (74)-(76) of the space
coordinates of the space-distributed orbit. The propagation times for this cased were proved
to be expressed by higher-order (second and fourth) elliptic integrals, which by means of the
recurrent system for elliptic equations (101) and (102) (see [35]) were expressed through the

zero-order elliptic integral J̃
(4)
0 (ỹ, q) in the Legendre form.

Here an interesting opportunity arizes also to apply the analytical approach, developed in
the paper [25] and in the section ”Application of the Weierstrass integral and of the Weierstrass
elliptic curve in the parametrizable form” of this paper. For the purpose, one may use the

representation J̃
(4)
0 (ỹ, q) (123) in the form of two equivalent, but different integrals in the

Weierstrass form. From the comparison of the two equivalent integrals, the Weierstrass invariants
g2 and g3 were determined as complicated rational functions (124) and moreover, the obtained
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formulaes did not presume any smallness of the modulus q of the elliptic integral. The knowledge
of the functions g2 and g3 from the formulae (124) allows to define the Weierstrass function (128)
ρ(z) = 1

z2
+ g2

20z
2 + g3

28z
4 + .... . Now, since the Weierstrass function is known, but the value of the

integral J̃
(4)
0 (y, q) should be expressed in terms of the ỹ−coordinates in the integral J̃

(4)
0 (y, q),

two more expressions are needed from the s.c.”theorem for four-dimensional uniformization”,
taken from the monograph [52] and presented also in the paper [25]

y = y0 +
1

4

f́ (y0)[
ρ(z; g2, g3)− 1

24 f́́ (y0)
] , (185)

Y = −1

4

f́ (y0)ρ́(z; g2, g3)[
ρ(z; g2, g3)− 1

24 f́́ (y0)
]2 , (186)

where Y = f(y) is the fourth-order algebraic polynomial

Y ≡ f(y) ≡ a0y
4 + 4a1y

3 + 6a2y
2 + 4a3y + a4 ⇔ (187)

⇔ J
(4)
0 (y) =

∫
dy√

a0y4 + 4a1y3 + 6a2y2 + 4a3y + a4

, f(y0) = 0 . (188)

In other words, similar to the uniformization (126) z−z0 =
x∫
x0

dx√
4x3−g2x−g3

⇔ y2 = 4x3−g2x−g3

of the cubic curve with the uniformization functions x ≡ ρ(z) and y ≡ ρ′(z) and its equivalence
with the elliptic integral, the equalities (187) - (188) mean that the fourth degree polynomial
(187) is equivalent to the elliptic integral (188) (in its general form with a fourth-degree
polynomial in the denominator) and the corresponding uniformization functions y (185) and Y
(186) ”uniformize” the fourth-degree algebraic polynomial (187). Note that in the uniformization
functions (185) and (186) the Weierstrass invariants g2 and g3 (124) are the ones in the second
integral −

√
a
∫

dx√
4x3−g2x−g3

in (123), which means that additionally the ”conformal” function

−
√
a = −

√
9g3

g2
K(q) = −

√
9g3

g2

(q4 − q2 + 1)

(2q4 − 5q2 + 2)
(189)

has to be calculated with g2 and g3 defined as g2 = (3K(q))4 g
4
3

g32
, g3 = −272K(q)6 g

7
3

g62
(124).

But of course, the uniformization may be performed also with respect to the invariants g2 and
g3 in the third integral

∫
dσ√

4σ3−g2σ−g3
in (123), so it is interesting to compare the results from

both approaches.
In such a way and if the two null cones formalism is applied, this will enable us to express

the propagation times in a complicated way. Further, it remains to solve the corresponding
differential equations for dR2

AB, to find the expressions for the space-time interval R̂2
AB and for

the geodesic distance R̃2
AB and thus to see whether the important properties of the space-time

interval to be positive, negative and zero and for the geodesic distance to be only positive will
be valid also for this case.

14.2. Most important experimental consequence from the developed theory of two null
intersecting cones and the plane elliptical orbits of the satellites
Now it may be summarized that with respect to the approach of the two null intersecting cones,
applied to plane elliptical orbits, there are two important consequences from the theory:
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1. The found limiting value for the eccentric anomaly angle (150) Elim = arcsin
[

1
2

√
2−e2
1−e2

]
=

45.002510943228 [deg], above which the space-time interval R̂2
AB is positive and the compatibility

condition (149) for inter-satellite communications is fulfilled. Evidently, the corresponding
restriction in the above proposed ””two null cones” approach, applied to the two space-
distributed orbits, will be with respect to the true anomaly angle flim. Although Elim is found
from a formalism, which is idealistic from a physical and experimental point of view, it should
be taken into account, when inter-satellite communications between satellites on one orbit take
place, since it corresponds to satellite configuration of 8 satellites per orbit and at angular
distance 45 deg, which is typical for the GLONASS satellite configuration (8 satellites per
orbit). Note however that the value Elim differs slightly from the value 45 deg, which means
that there will be a slight difference of 0.002510943228 [deg] from the ”exact” angular distance
45 deg. This will result in a slight increase of the distance between the satellites, which can be
calculated and perhaps should be taken into account. It is also interesting that for the limiting
value Elim in (150) the true anomaly angle f can be calculated from the known formulae in
celestial mechanics cos f = cosE−e

1−e cosE to be f = 45.541436900412 [deg] for the typical GPS
orbit eccentricity e = 0.01323881349526. We note that this value for f is also near to the value
Elim = 45.002510943228 [deg].

2. Quite an interesting consequence from the theory of two intersecting null cones is the
restriction on the eccentricity of the orbit (161) e2 ≤ 2

3 or e ≤ 0.816496580927726, which

follows from the simple inequality (160) sinE = 1
2
.

√
(2−e2)
(1−e2)

≤ 1 for the sin−function. It is

really amazing how this simple inequality leads to the fact that the geodesic distance R̃AB is
greater than the Euclidean distance R̃AB ≥ RAB (166), because of the simple formulae (165)

R̃AB =
√
R2
AB + a2(1− 3

2e
2). That is why in the forthcoming developments of the theory of two

intersecting null cones, for example on the base of the space-distributed orbits, it is extremely
important to check whether such a restriction on the ellipticity will also hold. Quite probably,
it will depend also on the other parameters (a, e,Ω, I, ω) of the space-distributed orbit. The
restriction on the ellipticity is particularly important in reference to the future developments
of satellite constellations on highly elliptical orbits [54]. The communications between such
satellites on such orbits, taking into account the General Relativity effects is still an unexplored
theoretical topic.

3. An important consequence from the theory about the propagation time of a signal, emitted
by a satellite, moving along a plane orbit or a space-distributed orbit is the real-valuedness
of the expression for the propagation time. Although for the second case the proof from a
mathematical point of view is more complicated, this is a proof also of the correctness of the
formalism and also opens the possibility for extending the formalism in the sense, explained
in the previous section. It is important to note that the proposed mathematical proofs for

the real-valuedness of the integrals a
c

∫
.
√

1− e2 cos2EdE and −2G⊕M⊕
c3

∫
.

√
1+e cosE
1−e cosEdE in the

expression (51) for the propagation time T and further, in proving the real-valuedness of the

expression (84) T̃1 = −2inac q
3
2 J̃

(4)
2 (y; q), expression (88) for T

(1)
2 = −2G⊕M⊕

c3
. n

(1−e2)
3
2
T̃1 and the

two integrals −inq
5
2

2G⊕M⊕
c3

(1 + e2)J̃
(4)
2 (ỹ, q) and inq

3
2

2G⊕M⊕
c3

(1+e2)
(1−e2)

J̃
(4)
4 (ỹ, q) in the expression

(91) for T
(2)
2 did not imply that any restrictions on the modulus of the elliptic integrals q or on

the ellipticity of the orbits are imposed. Concerning the two null cone formalism in this paper,
the only restriction on the ellipticity was e ≤ 0.816496580927726, but there was no requirement
for the ellipticity to be small of the order of 0.01. But such an assumption turned out to be
useful later on, when the properties of the space-time interval and the geodesic distance were
confirmed by the approach of fourth-order algebraic equations.Only the algebraic equation for
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the space-time distance was considered in this paper, the full investigation on the two algebraic
equations can be found in [22]. The problem however remains, also with reference of the two
null cones approach and the use of space-distributed orbits: can the properties of the space-time
distance and the geodesic distance from an algebraic point of view be proved without assuming
necessarily the smallness of the ellipticity of the orbit?
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