
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Stochastic modelling of daily air pollution in
Burgas, Bulgaria
To cite this article: S K Koleva et al 2023 J. Phys.: Conf. Ser. 2675 012003

 

View the article online for updates and enhancements.

You may also like
Comparative analysis of sorption
characteristics of Bulgarian grape seeds
and flours and flakes produced by them
A G Durakova, A L Bogoeva, A P Krasteva
et al.

-

The Hall effect is not so easy to detect
after all
Dragia Ivanov and Stefan Nikolov

-

Study of two-spring piezoelectric
harvesters
N P Georgiev and R P Raichev

-

This content was downloaded from IP address 3.147.44.121 on 15/05/2024 at 20:15

https://doi.org/10.1088/1742-6596/2675/1/012003
https://iopscience.iop.org/article/10.1088/1757-899X/878/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/878/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/878/1/012055
https://iopscience.iop.org/article/10.1088/1361-6552/aa6957
https://iopscience.iop.org/article/10.1088/1361-6552/aa6957
https://iopscience.iop.org/article/10.1088/1757-899X/618/1/012022
https://iopscience.iop.org/article/10.1088/1757-899X/618/1/012022
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssyLrhjZm3yNqmH3nvDPvlBw9keC_dqyxLTgMRwJ64ofV4WyTDHuL89sFZH4kvyv6eFjZw31dIkUsFND3Zf2wY3gWmmJz1H6-TRUu0vcPc77SwpKDRmDHdRKsTKIvR4Tyd1q4h1iMO7ME2Dt8mLXW92op9Ly4g7en7akKZok3UGa-l2cmmqAsnTKRKdz5BgQtoYJn_Ldmky19Sg1_TPbsZrFVT7Mo7uS3seDOpj2TAj3oCjd2AVUY368WIvYh1QEbMXJOjqKlhj-N3MjkjHPqScz6uho9Rf9WDmLa-dBGzPucChyxirWi5BgxT746cPT0Oq0BH82mcYYmrDazF7DuTdSs83_cKr&sig=Cg0ArKJSzDTJsaMEshi3&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMiTaNS'23
Journal of Physics: Conference Series 2675 (2023) 012003

IOP Publishing
doi:10.1088/1742-6596/2675/1/012003

1

 

 

 

 

 

 

Stochastic modelling of daily air pollution in Burgas, Bulgaria 

S K Koleva, S G Gocheva-Ilieva and H N Kulina 

Department of Mathematical Analysis, Faculty of Mathematics and Informatics, 

University of Plovdiv Paisii Hilendarski 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria 

E-mails: stkoleva@uni-plovdiv.bg, snow@uni-plovdiv.bg, kulina@uni-plovdiv.bg   

Corresponding author’s e-mail address: stkoleva@uni-plovdiv.bg 

Abstract. Exceeding the norms and limits of atmospheric air pollution causes enormous damage 

to the population's health and the environment. Determining the factors affecting air quality is a 

current task in a local, regional, and global scale. In this study, we use daily time series data for 

the main air pollutants in Burgas, Bulgaria – O3, NO, NO2, CO, SO2, and PM10, to analyze, 

model, and forecast these levels depending on meteorological factors. For this purpose, the 

stochastic ARIMA method and ARIMA with transfer functions are applied. Results are obtained 

for univariate and multivariate time series. Particular attention is paid to the concentrations of 

the secondary pollutant ground-level ozone (O3), which are modelled as a function of all 

variables considered. Results were evaluated using root mean square error, mean absolute 

percentage errors, and the coefficient of determination. Short-term forecasts have been obtained 

for seven days ahead. Model accuracy up to 84% has been established. 

1.  Introduction 

The quality of the air we breathe and its pollution are among the most pressing topics to date. There are 

36 automated and certified air control stations in Bulgaria and the main air pollutants in the larger cities 

of the country are monitored systematically. For the whole country, monitoring is carried out by the 

Executive Environment Agency, European and national norms and standards, and World Health 

Organization documents [1-3]. Although in recent years, harmful emissions into the ambient air have 

decreased, some systematic exceedances of air pollution for several cities in Bulgaria are still observed. 

It should be clarified that air pollution for each region depends to a significant extent not only on its 

weathering and geographical and climatic characteristics but also on a large number of anthropogenic 

factors. Such factors are the results of human activity, including various production processes, road 

traffic, emissions of harmful emissions from households, and others. The characteristics and harmful 

effects of air pollutants on human health are described, for example, in [1-3]. 

The availability of a huge volume of empirical measurement data in the field of air pollution enables 

their analysis and statistical modelling to derive trends and dependences, as well as to predict the future 

state of ambient air quality. A large number of studies on data processing on atmospheric pollutants 

have been published in the scientific literature. At the same time, in Bulgaria, such studies are relatively 

few. To analyse and model concentrations of the main air pollutants, such as O3 – ground-level ozone, 

CO – carbon monoxide, NO – nitrogen monoxide, SO2 – sulfur dioxide, NO2 – nitrogen dioxide, PM10 

– fine particulate matter below 10 microns and others different statistical and numerical methods were 

applied. The classical linear stochastic ARIMA (Auto Regressive Integrated Moving Average) approach 

and its variants [4] have been used in [5-9]. In [5], a stationary stochastic ARMA/ARIMA modelling 

approach has been considered to forecast the daily mean air pollutants O3, CO, NO, and NO2 



AMiTaNS'23
Journal of Physics: Conference Series 2675 (2023) 012003

IOP Publishing
doi:10.1088/1742-6596/2675/1/012003

2

 

 

 

 

 

 

concentration. The models were calibrated by means of different information criteria, such as the Akaike 

Information Criterion (AIC), Hannon–Quinn Information Criterion (HIC), Bayesian Information 

criterion (BIC), etc. and the plots of the Autocorrelation function (ACF), and Partial autocorrelation 

function (PACF). Guarnaccia et al. [6] built univariate seasonal ARIMA (SARIMA) models for 

predicting CO concentration levels in a district of Monterrey, Mexico and concluded that the use of 

hourly data allowed the achievement of reliable prediction especially on a short time of 24-hour period. 

The authors of [7] apply ARIMA to model, analyse and forecast SO2 and NO2 time series values, using 

average daily measurements. Statistical studies on PM10 pollution in two Bulgarian cities - Pernik and 

Ruse, are presented in [8,9]. A two-step SARIMA approach was developed in [10] for PM10 

concentration prediction. To achieve a real-world effect, meteorological variables are first predicted 

with one-dimensional SARIMA models, then the pollutant data is modelled depending on the historical 

and newly calculated predictive values of the predictors.  

In recent years, cutting-edge approaches based on machine learning (ML) algorithms have been 

actively used to model and predict empirical ambient air data. Many authors combine or compare their 

results with ARIMA and other classical statistical approaches, hybrid models are also developed. 

Wavelet analysis with energy spectrograms, combined with the multilayer feed-forward back 

propagation NN algorithm and compared with ARIMA are reported in [11] to forecast PM10 monthly 

levels in selected regions of Chennai. Discrete Haar wavelet transform and ARIMA models were 

coupled to improve ozone prediction in [12]. Principal Component Analysis (PCA) and path seeker 

technique are implemented in [13] to model the CO concentration. Paper [14] deals with the Random 

Forest algorithm for analysis and forecasting of PM10 pollution. The authors of [15] construct hybrid 

Elman ANN and ARIMA models using empirical data of SO2. Boosted trees method with regularized 

regression from ensemble learning group are applied for studying ground-level ozone and PM10 in [16]. 

In [17] the authors develop several ML models of O3 and PM10, based on hourly data. The best 

performance is obtained using the stochastic Gradient Boosting method, representative of ensemble tree-

based methods, demonstrating computational efficiency and robustness to overfitting. More results on 

ML methods and case studies in the field of air pollutants could be found in the review article [18]. 

The aim of this study, based on the collected empirical data for the city of Burgas are as follows: 1) 

To apply univariate ARIMA methods for stochastic regression modelling and forecasting separately the 

concentrations of the six air pollutants O3, SO2, NO, NO2, CO and PM10; 2) To create multivariate 

ARIMA models of each of these time series, depending on meteorological time series; 3) To construct 

the multivariate ARIMA model of tropospheric ozone; 4) To evaluate the models' performance and their 

residuals; 5) To validate the models by short-term predictions of pollution.  

The study was carried out using IBM SPSS Statistics [19,20].  

2.  Data and methods   

2.1.  Description of data and initial data processing 

This section presents the data and the results from the initial analysis performed on them.   

2.1.1.  Study area 

Burgas is the second largest city on the Bulgarian Black Sea coast. Here is the largest chemical and oil 

refinery in Southeastern Europe, which is also the largest employer in Bulgaria, the international and 

second busiest Bulgarian airport, as well as the most significant Bulgarian port and the only oil port in 

the country. The city is located on the westernmost point of the Black Sea. The climate is humid 

subtropical with wet and continental influence. The environment area is urbanized, with high building 

density, intensive car traffic and industrial activity in the municipality of Burgas. Three estuarine lakes 

are located on the territory of the city. A specific influence is also exerted by the sea breeze, whose 

circulation has a direct impact on the climate and the dispersion of atmospheric pollutants.  

 



AMiTaNS'23
Journal of Physics: Conference Series 2675 (2023) 012003

IOP Publishing
doi:10.1088/1742-6596/2675/1/012003

3

 

 

 

 

 

 

2.1.2.  Data   

In this article, we explore data on six major air pollutants for the city of Burgas for the period from the 

1 January 2019 to 31 March 2023 with average daily data or for N=1551 days. In particular, we are 

looking for mathematical models describing the behaviour of O3, μg/m3 (ground level ozone 

concentrations), CO, mg/m3 (carbon monoxide), NO, μg/m3 (nitrogen monoxide), SO2, μg/m3 (sulfur 

dioxide), NO2, μg/m3 (nitrogen dioxide), PM10, μg/m3 (fine particulate matter with diameter below 10 

microns) in relation to meteorological data.  

The following seven meteorological variables are used to build the multivariate models: MaxT, °C 

(maximum daily mean air temperature), MinT, °C (minimum daily average air temperature), Cloud, % 

(cloudiness), Humidity, % (relative air humidity), Precipi, mm (precipitation), Speed, m/s (wind speed), 

Pressure, mbar (ambient air pressure). The data were recorded from the automated measured station 

situated in Dolno Ezerovo, a corner of the city of Burgas. The GPS coordinates of the station Dolno 

Ezerovo are 42°31′05.99" N 27°22′22" E. Data were retrieved from the official sites [21,22]. 

The maximum number of missing values for each initial time series is less than 2%. In the analyses 

the missing values were replaced using linear interpolation. Several extreme values of pollutants were 

found and replaced by the next largest. The basic descriptive statistics of time series of pollutants and 

meteorological variables are given in Table 1.  

 

Table 1. Descriptive statistics of the examined data of air pollutants and meteorological data for the 

city of Burgas. 

Variable Mean Median Skewness Kurtosis 

O3, μg/m3 44.52 45.88 -0.14 -0.59 
NO, μg/m3 4.90 4.94 1.38 4.28 
NO2, μg/m3 14.10 13.17 0.72 0.45 
CO, mg/m3 0.31 0.25 1.48 2.89 
SO2, μg/m3 10.85 10.63 0.66 1.51 
PM10, μg/m3 33.79 30.21 1.47 3.12 
MaxT, °C 17.59 17.00 0.01 -1.05 
MinT, °C 10.49 10.00 -0.08 -0.98 
Cloud, % 0.38 0.32 0.57 -0.86 
Humidity, % 0.71 0.71 -0.57 1.77 
Precipi, mm  1.70 0 5.01 31.48 
Speed, m/s 1.47 1.31 1.56 3.80 
Pressure, mbar 1010.3 1010.6 -33.62 1256.29 

 

The next Figure 1 shows the sequences plots of the initial time series of the examined air pollutants. 
There are pronounced seasonal changes. Higher concentrations of pollution for SO2, NO, NO2, CO and 

PM10, are observed in winter period while in summer the levels drop. This behaviour is opposite for 

ozone. This indicates that weather conditions have a strong influence on pollutants’ emissions. The 

remaining causes of increased concentrations of harmful emissions, including car traffic, seasonal 

combustion processes from households and manufacturing enterprises, and others, are relatively 

constant and do not change sharply over time, compared to meteorological changes. Their influence is 

stochastically comprised in the PM10 values. This will make it easier for us to create models to predict 

pollutant concentrations for a short period of time ahead based on the meteorological conditions.   
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                                            (a)                                                                              (b) 

    
          (c)      (d)    

    
            (e)       (f)  

     
            (g)      (h)  

Figure 1. Sequence plots of the investigated variables: (a) O3, (b) NO, (c) NO2, (d) CO, (e) SO2, (f) 

PM10, (g) Tmin, (h) Speed.    
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2.1.3.  Methods used    

We will apply the Box-Jenkins ARIMA methodology [4]. The general form of the ARIMA model of a 

given time series variable Y  is represented as ARIMA (p, d, q) where p is the number of autoregressive 

terms, d is the number of differences, q is the number of moving average terms. The main requirements 

for building an adequate ARIMA model include normal or close to normal distribution, linear 

dependence, absence of missing values and stationarity [4,23].  

• Univariate ARIMA 

When the time series is stationary, i.e. the probability distribution does not depend on time, so its 

mean and variance are constant, the univariate AR process of order p is described by a difference 

equation of order p of the type:  

 1 1 2 2
1

... ,
p

j
t t t p t p t j t t

j

Y Y Y Y a B Y a   − − −
=

 
 = + + + + = +
 
 
  1,...,t p N= +  (1) 

where 1 2( , ,..., )p    are constant coefficients (model parameters), ta . is a stochastic term (random 

error, white noise) for each time t, under the assumption ( )2~ 0,ta WN  , B is the backward (lag) 

operator 1t tBY Y −= . 

If the process contains mostly systematic random fluctuations ta . around some fixed level, then it is 

defined as a stochastic MA process. The MA model with moving averages is of order q if, for each t, it 

is represented by a difference equation of order q of the type  

 1 1 2 2
1

... 1 ,
q

j
t t t t q t q j t

j

Y a a a a B a   − − −
=

 
 = − − − − = −
 
 

    1,...,t q N= +  (2) 

where 1 2, ,..., q    are constant parameters.  

In the general case, ARIMA (p,d,q) is written as  

 ( )
1 1

1 1 1
p q

dj j
j t j t

j j

B B Y B a c 
= =

   
   − − = − +
   
   

  . (3) 

In (3) c  is a constant,  

• Multivariate ARIMA 

When the dependent time series Y  is considered according to other time series 1 2, ,...,t t ktX X X  which 

values are known in the same time period, a multidimensional ARIMA could be used. It is called 

ARIMA with transfer functions (TF) [4]. The ARIMA/TF model is written as: 

 ( ) ( )
1

1 1 i i

k
d d bi

t t iti
ii

NumMA
B Y a B B X

AR Den


=

 
− = + − + 

 
   (4) 

where µ is constant, ib
B  is a delay member with a positive integer lag ib , MA and AR, iNum  and iDen  

have the form of the difference polynomials with constant coefficients: 

 

1 1

0 1

1 , 1 ,

, 1

p q
j j

j j
j j

u v
j j

i ij i ij
j j

AR B MA B

Num B Den B

 

 

= =

= =

   
   = − = −
   
   

   
   = = −
   
   

 

    (5) 
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To obtain statistically correct ARIMA or ARIMA/TF models, the significance of its coefficients 

must be achieved at a set level α (usually 0.05). 

2.1.4.  Data transformation    

The basic assumptions for ARIMA analysis include the normal or close to normal distribution and 

stationarity of the time series involved [23]. As it is seen from Table 1, the coefficients of skewness and 

kurtosis of the considered time series are different from zero, therefore the normality condition is 

violated. To stabilize the variance and improve the distribution to normality the Yeo-Johnson power 

transformation was used by the expressions [24]: 

 

 

 2

( 1) 1 / 0, 0

log( 1) 0, 0
( , ) , [ 2,2]

( 1) 1 / (2 ) 0, 2

log( 1) 0, 2

Y Y

Y Y

trY YJ Y

Y Y

Y Y





 


 

 



−

 + −  



+  =
= =  −

 − − + − −  


− − +  =



  (6) 

where Y  is the original variable, trY  is its transformed variable, and   is a real parameter. The 

parameter   is tuned by a stepwise procedure using some statistical tools or normality test.   

Table 2 shows the obtained values for λ, and Skewness and Kurtosis of the transformed pollutant’s 

variables. With the small values of Skewness and Kurtosis, it can be concluded that the distributions of 

the transformed variables are close to a normal distribution. The box plots of the standardized 

transformed variables are presented in Figure 2. It is observed the improvement of the distribution, 

however, the outliers exist, and could not be neglected. 

 

Table 2. Statistics of the transformed variables of air pollutants. 

Transformed pollutant 
variable Parameter λ Skewness Kurtosis 

trO3 1.2 0.018 -0.600 
trNO 0.6 0.665 1.248 
trNO2 0.2 -0.014 -0.201 
trCO -1.8 0.437 -0.564 
trSO2 0.8 0.352 0.708 
trPM10 -0.2 -0.429 2.724 

 

2.1.5.  Statistical measures to assess the quality of models  

The quality of models is evaluated by standard statistical indicators: coefficient of determination, root 

mean square error, mean absolute percentage error (R2, RMSE, MAPE), calculated by the expressions: 

 
( )

( )

2

2 21
2 1 1

1

ˆ
1 100 ˆ, , ,

N

t N N
t t

t t t tN
tt t

t
t

Y Y

R RMSE MAPE Y Y
N N Y

Y Y


 =

= =

=

−

= = = = −

−



 



. (7) 

where ˆ
tY  is the value predicted by the model at time t, Y  is the mean value of Y , N  is the sample size. 

We will look for models for which the coefficient of determination is close to 1 and the errors are small. 
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Figure 2. Box plots of the standardized transformed variables of air pollutants.     

3.  Results and discussion 

Using the developed methodology, univariate and multivariate models of transformed air pollutant 

variables have been constructed. Univariate models are a special case when there are no predictors.  

All models were built using data for N=1544 days. The data of the last 7 days will be used for model 

validation and forecasting the pollution level. 

3.1.  Building and evaluating the univariate ARIMA models 

For each variable of the six pollutants, separate univariate ARIMA models were built using their 

corresponding transformed variables. The process of constructing an ARIMA model requires five basic 

steps to correctly determine the parameters p, d, q. 

1) The corresponding sequence plots of the ACF and PACF are constructed and examined to reveal 

the presence of trends (d). The lags outside the permissible values are inspected to find initial values of 

p and q.  

2) In the presence of a PACF coefficient with a value close to 1 or -1, an augmented Dickey-Fully 

(ADF) test is conducted to specify whether it is a trend or not and to determine the exact value of the 

parameter d. 

3) An ARIMA (p,d,q) is constructed with selected parameters.     

4) The statistical significance of the parameters is checked. In our case, the significance level should 

be Sig.<0.05. Insignificant parameters are removed and the values of p, q are adjusted. The parameter 

selection procedure can be repeated many times. 

5) A detailed analysis of the residuals of the model is carried out to establish its statistical adequacy. 

The residual values of the model are investigated to be within the appropriate confidence interval using 

their autocorrelation functions (ACF). It is also recommended to check the residuals with the Ljung-

Box portmanteau test or other appropriate statistical tests. For this purpose, such a test must be 

insignificant, i.e., Ljung-Box Sig. >0.05. This means that the residuals of the ARIMA model do not 

contain autocorrelation.  

When obtaining several different adequate ARIMA models, the simpler one is chosen or the one that 

has the best statistical indicators, in this case the attention is on the indicators of (7). 

The next Figure 3 shows the univariate ARIMA predictions for transformed variables. 
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Table 3. Statistics of univariate models of transformed variables of air pollutants. 

Transformed  
variable 

Univariate 
ARIMA model R2 RMSE MAPE 

Ljung-Box  
Sig. 

trO3  ARIMA(1,0,6) 0.756 16.442 20.610 0.058 
trNO ARIMA(1,0,5) 0.775 0.577 10.842 0.051 
trNO2 ARIMA(1,0,10) 0.611 0.376 8.370 0.314 
trCO ARIMA(1,0,21) 0.812 0.036 16.602 0.210 
trSO2 ARIMA(1,0,13) 0.715 1.582 20.163 0.246 
trPM10 ARIMA(1,0,3) 0.477 0.131 3.819 0.533 

   
a)     b) 

   
c)     d) 

   
e)     f) 

Figure 3. Line plots of the transformed versus modelled values of the six studied air pollutants.  
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3.2.  Building the multivariate ARIMA models 

ARIMA/TF models are built for each pollutant separately. The seven meteorological time series from 

Table 1 were used as predictors. The basic statistics of the selected models are given in Table 4. The 

comparison with the statistics of the univariate models shows that all models with transfer functions 

have improved values over the univariate models - both with a larger data matching rate (R2) and lower 

RMSE values, as well as the MAPE drops. 

 

Table 4. Summary statistics of the built air pollutant’s ARIMA/TF models (for transformed variables).  

Transformed 
dependent 
variable 

ARIMA model R2 RMSE MAPE 
Ljung-

Box 
Sig. 

Predictors 

trO3 ARIMA/TF (1,0,4) 0.840 13.356 16.004 0.368 MinT, Speed, 
Humidity, Precipi, 
trNO, trNO2, trCO, 

trSO2, trPM10 
trCO ARIMA/TF(1,0,3) 0.854 0.032 15.853 0.178 MinT, Speed, Cloud, 

Pressure 

trNO ARIMA/TF(1,0,5) 0.808 0.535 10.766 0.096 MaxT, Cloud, 
Humidity, Pressure 

trSO2 ARIMA/TF(1,0,13) 0.726 1.552 19.774 0.359 MaxT, Pressure, 
Humidity 

trNO2 ARIMA/TF(1,0,10) 0.749 0.303 6.693 0.097 MinT, Speed, Cloud, 
Pressure 

trPM10 ARIMA/TF(1,0,3) 0.531 0.124 3.606 0.522 MaxT, MinT, Speed, 
Cloud 

3.3.  Study on the residuals of the multivariate ARIMA model of ozone 

We have paid particular attention to the secondary air pollutant ground-level ozone which was modelled 

as a function of all the variables considered. 84% coefficient of determination was achieved. In this 

subsection, we present the results of the residuals diagnostics of the model ARIMA/TF (1,0,4) of trO3. 
Figure 4 illustrates the ACF and PACF of the residuals of the ARIMA/TF ozone model for 24 lags. It 

snows a lack of serial correlation. Figure 5 shows the box plot of the residuals and Figure 6 shows the 

histogram of the residuals of this model. We will add that the formal Kolmogorov-Smirnov test to check 

the normality of the residuals is small with a statistic equal to 0.035, df=1544, and is significant due to 

the presence of outliers. In general, we could conclude that the distribution of the residuals is close to 

normal.  

The model performance in terms of the coefficient of determination R2 is illustrated in Figure 7. 
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Figure 4. ACF and PACF figures of the residuals of the ARIMA/TF model of trO3_7.    

 

 

Figure 5. Box plot of model residuals for ozone. 
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Figure 6. Histogram of ARIMA/TF ozone model residuals 

 

 

Figure 7. Scatterplot for achieved R2=84% model fit to data obtained by the retransformed predicted 

values from the ozone model with a 95% confidence interval. 

 

3.4.  Application of ARIMA/TF models to predict future concentrations 

To validate the model, from all available data of the dependent variable (trO3) the last few values could 

be deleted. In our case, these are the data for the last 7 days. To obtain the forecasts, it is necessary to 

know the values of the predictors (i.e. meteorological variables and the other pollutants). In the real case, 

the synoptic weather forecasts could be used and the required values of the pollutant variables must be 

predicted. The O3 forecasts were obtained without the participation of the last 7 ozone values in the 

modeling procedure. In Figure 8. a comparison is shown of the observations and model ARIMA/TF 
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(1,0,4) predictions for the previous 7 days (on the left side of the vertical line) and the observations and 

forecasted pollutant data for the validated last 7 days (on the right of the vertical line).  

 

Figure 8. Observed versus predicted ozone values using the ARIMA/TF model for the last 7 days 

(March 18 to 24, 2023, to the left of the vertical line) and observed versus forecasts using the 

ARIMA/TF model for the last 7 days (March 25 to 31, 2023, to the right of the vertical line). 

 

The conducted analysis and diagnostics of the model residuals in this subsection give us reason to 

conclude that the constructed ARIMA/TF(1,0,4) ozone model (see Table 4) is statistically valid and 

capable of predicting concentrations in a short period ahead. 

4.  Conclusion 

In this study, we investigated average daily data for six air pollutants and seven meteorological variables 

for the city of Burgas, Bulgaria over a period of 4 years and 3 months. The Box-Jenkins stochastic 

method for time series analysis was applied for modelling. Univariate ARIMA and multivariate 

ARIMA/transfer function models were built and statistically investigated. In the preprocessing stage, 

we used the Yeo-Johnson transformation to stabilize variance and improve the distribution of data. 

Applying the ARIMA/TF allowed to build models reviling the impact of the given 7 meteorological 

variables on the considered 6 air pollutants separately. Statistical analyses were carry out to evaluate the 

model performance and conduct the analyses of the model’s residuals, thus validated the model 

adequacy and usefulness. Especially, the ozone model was built and 84% of data fit was achieved. The 

model was applied for 7-days ahead forecasting.  

More sophisticated modeling approaches are planned as future work, such as ML, discrete wavelet 

transform, singular spectrum analysis, or others to improve the performance of models and forecasts. 
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