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Abstract. We revisit the Atiyah-Hitchin manifold using the generalized Legendre transform
approach. Originally it is examined by Ivanov and Roček, and it has been further explored
by Ionaş, with a particular focus on calculating the explicit forms of the Kähler potential
and the Kähler metric. Notably, there exists a distinction between the former study and the
latter. In the framework of the generalized Legendre transform approach, a Kähler potential is
formulated through the contour integration of a specific function with holomorphic coordinates.
It’s essential to note that the choice of the contour in the latter differs from that in the former.
This discrepancy in contour selection may result in variations in both the Kähler potential and,
consequently, the Kähler metric. Our findings demonstrate that the former exclusively yields
the real Kähler potential, aligning with its defined properties. In contrast, the latter produces a
complex Kähler potential. We present the derivation of the Kähler potential and metric for the
Atiyah-Hitchin manifold in terms of holomorphic coordinates, considering the contour specified
by Ivanov and Roček.

1. Introduction
A pioneering method for constructing hyperkähler metrics involves the generalized Legendre
transform approach, as outlined in previous works [1, 2, 3, 4]. This approach establishes
a connection between the Kähler potentials of specific hyperkähler manifolds and a linear
space. This is also related to the theory of twistor spaces of hyperkähler manifolds [2]. In
this methodology, a Kähler potential is derived through the contour integration of a function
with holomorphic coordinates (refer to (3) and (4)). This integration, termed the F -function,
has been applied to various hyperkähler metrics, such as the Eguchi-Hanson family of self-dual
instantons [5, 6], the Taub-NUT family of self-dual instantons [6], and the metric proposed by
Calabi [7].

Following these studies, the Atiyah-Hitchin manifold [8], representing the metric on the
centered moduli space of two Bogomol’nyi-Prasad-Sommerfield SU(2) monopoles, has been
considered within the context of the generalized Legendre transform approach, as presented
in [9]. In [9], the F -function generating the Atiyah-Hitchin manifold is proposed, and the
corresponding Kähler 2-form is derived, precisely matching one of the Atiyah-Hitchin manifold.
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However, the explicit forms of the Kähler potential and metric are not obtained therein due to
the intricate and messy nature of the calculations. The first explicit calculation of the Kähler
potential and metric for the Atiyah-Hitchin manifold within the generalized Legendre transform
approach has been undertaken in [10, 11]. This calculation retains the original holomorphic
coordinates in the F -function, enabling the derivation of the metric in terms of these coordinates.
Deriving the metric while manifestly keeping the complex structure is crucial for investigating
geometric properties. Nevertheless, it is imperative to emphasize that several aspects of [10, 11]
require reconsideration. Primarily, the choice of the integration contour in the F -function in [10]
differs from that in [9]. However, it can be demonstrated that this variance leads to a complex
Kähler potential rather than a real one. In contrast, the choice made in [9] aligns with the
definition of the Kähler potential, resulting in a real outcome. Thus, the calculations in [10]
pertaining to the derivation of the Kähler potential and metric should be revisited in light of
the integration contour specified in [9].

In this proceeding, we reassess the Atiyah-Hitchin manifold within the framework of the
generalized Legendre transform approach. We adopt the integration contour from [9] in the
F -function and derive the Kähler potential and metric with holomorphic coordinates based on
that choice. Our analysis demonstrates that the contour selection in [9] yields a real Kähler
potential. We provide a comprehensive presentation of all the necessary steps to derive the
Kähler potential and metric, starting from the F -function defining the Atiyah-Hitchin manifold.
This proceeding is grounded in the research presented in [12].

2. The generalized Legendre transform
We briefly explain the generalized Legendre transform construction of hyperkähler manifolds as
presented in the work by Lindström and collaborators [4]. Our starting point is a polynomial
given by

η(2j) =
z̄

ζj
+

v̄

ζj−1
+

t̄

ζj−2
+ · · ·+ x+ (−)j(· · ·+ tζj−2 − vζj−1 + zζj), (1)

where z, t, · · · , x are holomorphic coordinates, and ζ is the coordinate of the Riemann sphere
CP 1 = S2. This polynomial is referred to as an O(2j)-multiplet. Equation (1) must satisfy the
reality condition

η(2j)
(
−1

ζ̄

)
= η(2j)(ζ). (2)

The Kähler potential for a hyperkähler manifold is constructed using a function involving η(2j):

F =

∮
C

dζ

ζ
G(η(2j)), (3)

where G is an arbitrary holomorphic (possibly single or multi-valued) function, and the contour
C is chosen so that the result of the integration is real. Equation (3) is referred to as the
F -function.

The Kähler potential can be derived from the F -function through a two-dimensional Legendre
transform with respect to v and v̄:

K(z, z̄, u, ū) = F (z, z̄, v, v̄, t, t̄, · · · , x)− uv − ūv̄, (4)

along with the extremizing conditions

∂F

∂v
= u, (5)

∂F

∂t
= · · · = ∂F

∂x
= 0. (6)
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The Kähler metric can then be obtained by differentiating the Kähler potential with respect to
z, z̄, u, and ū.

2.1. The function F for the Atiyah-Hitchin manifold
Let’s explore a O(4)-multiplet η(4) = η(4)(ζ) which is expressed in a Majorana normal form:

η(4) =
z̄

ζ2
+

v̄

ζ
+ x− vζ + zζ2. (7)

To facilitate further analysis, it’s convenient to represent this form in terms of its roots and a
scale factor. The reality condition (refreal) ensures that the four roots of η(4) remain invariant
under the antipodal map ζ 7→ −1/ζ̄. Therefore, (7) can be expressed as:

η(4) =
ρ

ζ2
(ζ − α)(ᾱζ + 1)

(1 + |α|2)
(ζ − β)(β̄ζ + 1)

(1 + |β|2)
. (8)

Without loss of generality, we assume the scale factor ρ to be positive.
In accordance with [9] and [10], the F -function, F = F (z, z̄, v, v̄, x), of the Atiyah-Hitchin

manifold is given by:

F = F2 + F1 = − 1

2πih

∮
Γ0

dζ

ζ
η(4) +

∮
Γ

dζ

ζ

√
η(4). (9)

Here, h is a constant coupling scale. The contour Γ0 encircles the origin of the ζ-plane
counterclockwise, and the contour Γ = Γm ∪ Γ′

m winds around two branch cuts between α
and −1/β̄, and β and −1/ᾱ, referring to a double contour. The choice of the double contour
is initially proposed in [9], while [10] only opts for Γm as Γ, referred to as a single contour. In
the case of the single contour, it can be shown that the function F1 is not real, leading to the
Kähler potential not being real. However, the double contour ensures that both F1 and the
Kähler potential are real-valued.

In the following, we demonstrate the reality of F . We can rewrite F1 as:

F1 = 2z
∂F1

∂z
+ 2z̄

∂F1

∂z̄
+ 2v

∂F1

∂v
+ 2v̄

∂F1

∂v̄
+ 2x

∂F1

∂x
. (10)

If we define, for n ∈ Z:
In =

∮
Γ
ζn

dζ

2ζ
√

η(4)
, (11)

then the partial derivatives in (10) can be expressed as:

∂F1

∂z
= I2,

∂F1

∂z̄
= I−2,

∂F1

∂v
= −I1,

∂F1

∂v̄
= I−1,

∂F1

∂x
= I0. (12)

For (11), we can prove the relation:

I−n = (−1)nIn. (13)

The proof is given in Appendix A in [12]. From (13), it follows that I0 is real-valued, and (10)
can be rewritten as:

F1 = 2xI0 − 2(vI1 + vI1) + 2(zI2 + zI2). (14)

Therefore, we’ve established that F1 is real-valued. As will be shown in (15), the Kähler potential
is real from (4) because F2 is also real-valued.
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Now let’s evaluate the Kähler potential from (9) by the generalized Legendre transformation.
To do that, it is necessary to perform the integrals in (9). Explicitly, they are F2 and In
(n = 0, 1, 2) in F1. F2 can be evaluated by a straightforward application of Cauchy’s integral
formula. Then, we get:

F2 = −x

h
. (15)

For the evaluation of In in F1, we require several steps. First, let us rewrite In only by using the
single contour Γm. When deforming Γ′

m to Γm, we need to pick up the residues of the integrand
of In. This integrand has two simple poles - one at ζ = 0 and the other at ζ = ∞. Therefore,
we have:

In = 2

∮
Γm

ζn
dζ

2ζ
√
η(4)

+ 2πiR(0, n) +R(∞, n), (16)

where R(ζ, n) denotes the residue for the integrand of In at ζ ∈ 0,∞. Evaluating R(ζ, n), we
find that F1 becomes:

F1 = 4

{
xI0(Γm)−

(
vI1(Γm)− zI2(Γm)− πi

4
· v√

z
+ c.c.

)}
, (17)

Here, we define:

In(Γm) =

∮
Γm

ζn
dζ

2ζ
√
η(4)

(n = 0, 1, 2). (18)

In the following subsections, the integral In(Γm) will be evaluated.

2.2. Calculation of In(Γm)
To compute In(Γm) for n = 0, 1, 2, we extensively apply the theory of Weierstrass elliptic
functions. We aim to express In(Γm) using the Weierstrass normal form. To achieve this, we
introduce a single transformation:

(ζ − α)(1 + ᾱβ)

(ζ − β)(1 + |α|2)
=

X − e3
e1 − e3

, (19)

where

e1 = −ρ

3
(k2 − 2), e2 =

ρ

3
(2k2 − 1), e3 = −ρ

3
(k2 + 1), k =

|1 + ᾱβ|√
(1 + |α|2)(1 + |β|2)

. (20)

Let Xζ be the image of ζ through this birational map. Using this notation, we have

X0 = e3 + (e1 − e3)
α

β

1 + ᾱβ

1 + |α|2
= e3 + ρ · α

β

1 + ᾱβ

1 + |α|2
, (21)

X∞ = e3 + ρ · 1 + ᾱβ

1 + |α|2
. (22)

Then, Eq. (19) turns out to be

ζ = β
X −X0

X −X∞
. (23)

The contour Γm on the ζ-plane is mapped to one on the X-plane via Eq. (23), denoted by the
same symbols, namely, Γm. Therefore, In(Γm) is expressed as

In(Γm) =

∮
Γm

(
β
X −X0

X −X∞

)n dX

Y
, (24)
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where
Y 2 = 4(X − e1)(X − e2)(X − e3) = 4X3 − g2X − g3, (25)

with

g2 =
4

3
ρ2(1− k2 + k4), g3 =

4

27
ρ3(k2 − 2)(2k2 − 1)(k2 + 1). (26)

For the case n = 0, it is straightforward to see that

I0(Γm) =

∮
Γm

dX

Y
=

2
√
ρ
K(k) ≡ 2ω1. (27)

To evaluate Eq. (24) with n = 1, 2, we need to use the Weierstrass ℘-function, ζ-function, and
σ-function. We define uζ ∈ C/Λ for ζ ∈ C ∪∞ by the equation

Xζ = ℘(uζ), (28)

and set Yζ = ℘′(uζ). We divide uζ into the real part and the imaginary part with respect to the
antiholomorphic involution ζ 7→ −1/ζ̄ on C ∪∞, i.e.,

u±ζ = uζ ± u−1/ζ̄ . (29)

Taking ζ to be infinity, we obtain
u±∞ = u∞ ± u0. (30)

We denote (x±, y±) as the (X,Y )-coordinates of the point corresponding to u±∞ via the Abel
map. They can be obtained as

x± =
x± 6|z|

3
, y+ = iv+(x+ − x−), y− = v−(x− − x+) . (31)

Here we define
v+ = Im

v√
z
, v− = Re

v√
z
. (32)

In the following, we shall calculate I1(Γm). First of all, we find

I1(Γm) = β

[∮
Γm

dX

Y
+

X∞ −X0

Y∞

∮
Γm

Y∞
X −X∞

dX

Y

]
. (33)

The first term in (33) can be readily evaluated with the use of (27). To calculate the second
term, it is necessary to calculate the integral

π(Xζ) ≡ −
∮
Γm

Yζ
X −Xζ

dX

Y
, ζ ∈ C ∪ {∞} , (34)

with ζ = ∞. We can calculate this for arbitrary ζ by using the Abel map and the formula

℘′(v)

℘(u)− ℘(v)
= −ζ(u+ v) + ζ(u− v) + 2ζ(v) . (35)

Then, we have

π(Xζ) = 4 det

(
uζ ω1

ζ(uζ) ζ(ω1)

)
(mod 2πiZ) . (36)
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In the case for ζ = ∞, after several steps, we find

π(X∞) =
1

2
{π(x+) + π(x−)}+ 2ω1

Y∞
X∞ −X0

+ aπi , a ∈ Z. (37)

We substitute (27) and (37) into (33) and find

I1(Γm) =
1

4
√
z
{π(x+) + π(x−) + 2aπi} . (38)

Next, we evaluate I2(Γm). We first observe(
X −X0

X −X∞

)2

= 1 +
2(X∞ −X0)

Y∞

Y∞
X −X∞

+

(
X∞ −X0

Y∞

)2( Y∞
X −X∞

)2

. (39)

The integrals of the first term and the second term can be computed using Eq. (27) and Eq.
(37), respectively. The integral of the second term is evaluated as∮

Γm

2(X∞ −X0)

Y∞

Y∞
X −X∞

dX

Y
=

1

2β
√
z
[π(x+) + π(x−) + 2aπi]− 4ω1. (40)

To perform the integration of the third term in Eq. (39), we find(
Y∞

X −X∞

)2

= 2(X −X∞)− 12X2
∞ − g2
2Y∞

Y∞
X −X∞

− Y
d

dX

(
Y

X −X∞

)
. (41)

By using this, we obtain∮
Γm

(
Y∞

X −X∞

)2 dX

Y

= −4η1 − 4ω1

(x
3
− 2β2z

)
+

1

2

(
v√
z
− 4β

√
z

)
[π(x+) + π(x−) + 2aπi] . (42)

Therefore, with the use of Eq. (40) and Eq. (42), we have

I2(Γm) = −1

z

[
η1 + ω1 ·

x

3
− 1

8

v√
z
(π(x+) + π(x−) + 2aπi)

]
, (43)

where η1 is the quasi-period of ζ-function.

2.3. The function F in terms of elliptic integrals
We revisit the computation of F1, aiming to evaluate the second term in Eq. (17) using Eq.
(38) and Eq. (43). Consequently, we obtain

vI1(Γm)− zI2(Γm)− πi

4

v√
z
= η1 + ω1 ·

x

3
+

v

8
√
z
(π(x+) + π(x−)) +

πi

4
(a− 1) · v√

z
. (44)

Utilizing Eq. (31), we observe that the integrands of π(x±) are purely imaginary and real,
respectively, leading to π(x+) ∈ iR and π(x−) ∈ R. This results in

v√
z
(π(x+) + π(x−)) + c.c. = 2 (iv+π(x+) + v−π(x−)) , (45)

where v± are defined in Eq. (32). Using Eq. (31), we express F1 from Eq. (17) as

F1 = −8η1 + 8(x+ + x−)ω1 − (iv+π(x+) + v−π(x−)) + 2π(a− 1)v+. (46)

Here, we’ve employed x = 6(x+ + x−). Consequently, the final expression for F = F2 + F1 is

F = −8η1 +

(
8ω1 −

3

2h

)
(x+ + x−)− (iv+π(x+) + v−π(x−)) + 2π(a− 1)v+. (47)
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2.4. Deriving the Kähler potential and the Kähler metric
The Kähler potential K = K(z, z̄, u, ū) describing the Atiyah-Hitchin manifold is expressed
through the generalized Legendre transformation as follows:

K(z, z̄, u, ū) = F (z, z̄, v, v̄, x)− (uv + ūv̄), (48)

subject to the conditions given by Eq. (5) and Eq. (6). The Kähler potential K satisfies the
hyperkähler Monge-Ampère equation:

det

(
Kzz̄ Kzū

Kuz̄ Kuū

)
= 1. (49)

Upon solving the conditions in Eq. (5) and Eq. (6) and eliminating v and v̄, we obtain:

K = −8η1 + 2(x+ + x−)ω1. (50)

It is important to highlight that this Kähler potential is real-valued, consistent with the definition
of the Kähler potential. This result stems from the choice of the double contour.

Next, we proceed to derive the Kähler metric. We introduce holomorphic coordinates Z and
U defined by:

Z = 2
√
z, U = u

√
z. (51)

By this coordinate change, the hyperkähler Monge-Ampère equation is preserved:

det

(
KZZ̄ KZŪ

KUZ̄ KUŪ

)
= 1. (52)

In the following, we calculate the components KZZ̄ , KUZ̄ , KZŪ , and KUŪ of the metric with
respect to the holomorphic coordinates (Z,U).

We initiate by evaluating dη1 and dx± using dZ, dZ̄, dU , and dŪ . From Eq. (5), we find
that U and Ū can be expressed as:

U = −1

2
(π(x+) + π(x−))− πi(a− 1), Ū = −1

2
(−π(x+) + π(x−)) + πi(a− 1), (53)

where a is the integer given by Eq. (37). This leads to:

dU = −1

2
(dπ(x+) + dπ(x−)), dŪ = −1

2
(−dπ(x+) + dπ(x−)). (54)

Here, dπ(x±) can be written in terms of dx±, dg2, and dg3. In addition, dg2 and dg3 can be
converted to dω1 and dη1. The expression of dπ(x±) is:

dπ(x±) =
4(x±ω1 + η1)

y±
dx± +

8(x2± − V η1)

y±
dω1 −

8(x± + V ω1)

y±
dη1, (55)

where:

V =
−3g3ω1 + 2g2η1
12η21 − g2ω2

1

. (56)

Using Eq. (55) and Eq. (54) with dω1 = 0 (obtained from Eq. (6)), we get:

dη1 =
A−(dU − dŪ)−A+(dU + dŪ) + 4A+A−(Z̄dZ + ZdZ̄)

8(A−B+ −A+B−)
, (57)

dx± =
(−B+ +B−)dU − (B+ +B−)dŪ + 4A±B±(Z̄dZ + ZdZ̄)

4(A−B+ −A+B−)
. (58)
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By using Eq. (57) and Eq. (58), we can derive KZZ̄ , KUZ̄ , KZŪ , and KUŪ . Putting

Q = (η1 + e1ω1)(η1 + e2ω1)(η1 + e3ω1) = η31 −
g2
4
ω2
1η1 +

g3
4
ω3
1, (59)

we have:

KZZ̄ = − 2

Q|Z|2
K4, (60)

KUZ̄ =
v−K3+ + iv+K3−

2QZ̄
, (61)

KZŪ =
v−K3+− iv+K3−

2QZ
, (62)

KUŪ = − 1

2Q|Z|2
K2, (63)

where:

K2 =

(
g2

4
− 3x+x−

)
η21

−
(
3g3
2

+ (x+ + x−)
g2
2

)
ω1η1 +

(
g22
16

+ 3(x+ + x−)
g3
4

+ x+x−
g2
4

)
ω2
1, (64)

K3± = η13 + 3x±ω1η
2
1 +

g2
4
ω2
1η1 −

(g3
2

+ x±
g2
4

)
ω3
1, (65)

K4 = η14 + 2(x+ + x−)ω1η
3
1 +

(g2
4

+ 3x+x−

)
ω2
1η

2
1

− g3
2
ω3
1η1 − (x+ + x−)

g3
4
ω4
1. (66)

Finally, KUŪ is derived by substituting Eq. (60)–Eq. (62) into the Monge-Ampère equation
Eq. (52). We have provided all the steps of the calculation of the Kähler potential the Kähler
metric.
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