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Abstract: Electrical load forecasting is an essential foundation for power reliable and 
economical operation of the power grid. Most forecasting models regard the prediction results 
as deterministic variables, which ignores the randomness and volatility of the power load. At the 
same time, insufficient historical load data often lead to undertrained models, which affects the 
accuracy of capturing uncertain information. Therefore, we proposed an optimized transfer 
learning-based method for short-term load-interval prediction. A deep learning quantile 
regression model would be constructed by source domain data in the method, and the weights of 
the source model would be optimized to avoid negative transfer. Then, the target model is 
constructed by parameter transfer based on key layers and is tuned with hyperparameters by 
target domain data. From the experimental discussion, it is known that the model with an 
optimized transfer learning strategy can accurately quantify the fluctuation range of future power 
load.  

1. Introduction 
The entry of renewable energy with intermittent nature into the grid system will bring uncertainty. This 
can also make the supply and deployment of electricity increasingly complex, which brings significant 
new challenges to power load forecasting. These challenges also make uncertain information essential in 
decision-making in power systems. 

Short-term load forecasting (STLF) focuses on addressing daily operations, system safety analysis, 
and scheduling maintenance [1]. The research on STLF approaches can be classified mainly into 
traditional technologies and emerging approaches [2]. The majority of the existing statistical methods use 
linear models [3], and the electric load is susceptible to external factors such as weather and holidays [4], 
so the accuracy can be limited in a fluctuating environment.  

With the advancement of artificial intelligence, machine learning models including support vector 
machines [5], radial basis function neural networks [6], random forests [7], and deep learning models [8] have 
better nonlinear fitting capability than traditional technologies due to their sensitivity to data features and 
more complex internal structure [9].  

Probabilistic forecasting can effectively capture the uncertainty information of load forecasting. 
Traditional point forecasting models can only obtain the exact forecast value at every step. In contrast, 
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the interval forecasting method in probabilistic forecasting can predict the future fluctuation range of 
actual values [10], which is a useful tool for quantifying uncertainty information. Due to its more adaptable 
and effective features, quantile regression is a significant extension of conventional mean regression in 
interval prediction. It can directly calculate the distribution function and quantile and can be successfully 
combined with neural networks to improve the accuracy of interval prediction [11].  

However, existing STLF models generally rely on a great deal of historical load data to train. Transfer 
learning becomes a solution to the problem of difficult access to realistic data [12]. On the one hand, the 
time cost is reduced by pre-training the models [13]. On the other hand, correlated data patterns are shared 
by constructing feature spaces [14]. The accuracy of mapping data for load prediction can be improved, 
however, this has not been addressed in studies on probabilistic prediction.  

A short-term load-interval prediction approach based on optimized transfer learning is proposed in 
this study and is motivated by the notions mentioned above. The remainder of the essay is structured as 
follows. Quantile regression and transfer learning methodology are covered in Section II. The interval 
prediction approach based on optimized transfer learning is described in depth in Section III. Section IV 
analyzes and discusses the experimental results. Section V provides a summary of this work. 

2. Related work 
The related work in this paper is divided into two subsections. The benefits of the approach utilized in 
this work are explained in Section A, which also presents the ideas behind transfer learning. Section B 
introduces the basic definition of quantile regression. 

2.1 Transfer learning 
Transfer learning (TL) improves the learning task in the target domain by sufficiently learning historical 
data of the domain or task in question to absorb knowledge [15]. This approach relaxes the condition that 
traditional machine learning must have sufficient training samples and extends machine learning for 
practical applications. It is currently widely used in artificial intelligence, such as computer vision [16], 
natural language processing [17], and time series forecasting [18].  

ሾ𝜔௦, 𝜔்ሿ → 𝛺், 𝜔௦ ∈ 𝛺௦                                                              (1) 
where 𝜔௦  and 𝛺௦  are the knowledge and task of the source domain respectively, 𝜔் and 𝛺்  are the 
knowledge and task of the target domain respectively. 

Due to the difficulties in getting them, there aren't enough genuine data available for the job or topic 
in question. To address the issue of data scarcity and because the majority of tasks or data are relevant, 
transfer learning can be used to share instances, parameters, features, and relationships to new models in 
a certain way to accelerate and optimize the learning of models. By identifying common or a priori 
parameters between different models, parameter transfer, sometimes referred to as model transfer, can 
assist reduce the target model's training time and increase its prediction accuracy. 

2.2 Quantile regression 
It is frequently challenging to map the more dispersed distribution using traditional mean regression. To 
correctly portray the mapping information of the explanatory factors to the response variables at different 
quantile points, we used quantile regression (QR) [19]. Assuming a linear relationship between the 
independent variable 𝑋 ൌ ሾ𝑋ଵ, 𝑋ଶ, … , 𝑋௞ሿ′  and the dependent variable 𝑌 , quantile regression can 
characterize the mapping information of each particular explanatory variable 𝑋௜ to the responsive variable 
𝑌௜ at different quantile points 𝜇(0 ൏ 𝜇 ൏ 1)with the following expressions: 

𝑄௒೔
ሺ𝜇|𝑋ሻ ൌ 𝑋ᇱ𝛼ሺ𝜇ሻ ൅ 𝜀ሺ𝜇ሻ                                                          (2) 

where 𝑄௒೔
ሺ𝜇|𝑋ሻ  denotes the 𝜇 -the conditional quantile of the responsive variable 𝑌௜  under the 

explanatory variable 𝑋௜ ; 𝛼ሺ𝜇ሻ denotes the vector of regression coefficients based on the conditional 
quantile point 𝜇, 𝛼ሺ𝜇ሻ ൌ ሾ𝛼ଵሺ𝜇ሻ, 𝛼ଶሺ𝜇ሻ, … , 𝛼௞ሺ𝜇ሻሿ ′, 𝑘 is the number of quantile points; 𝜀ሺ𝜇ሻ denotes 
the error of different quantile points 𝜇. 𝛼ሺ𝜇ሻ can be obtained according to the following equation: 

𝛼ොሺ𝜇ሻ ൌ arg 𝑚𝑖𝑛 ෍ 𝛿ఓሺ𝑌௜ െ 𝑋௜
ᇱ𝛼ሻ

௦

௜ୀଵ
                                                    (3) 
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where 𝑠 is the sample size; 𝑋௜ ൌ 𝑋ଵ௜, 𝑋ଶ௜, … , 𝑋௞௜; 𝛿ఓሺ𝑌௜ െ 𝑋௜
ᇱ𝛼ሻ is the asymmetric loss function at the 

conditional quantile point 𝜇, which is expressed as a segmented linear function as: 
𝛿ఓሺ𝑌௜ െ 𝑋௜

ᇱ𝛼ሻ ൌ ሺ𝑌௜ െ 𝑋௜
ᇱ𝛼ሻሺ𝜏 െ 𝐼ሺ𝑌௜ െ 𝑋௜

ᇱ𝛼ሻሻ                                           (4) 
where 𝐼ሺ𝑌௜ െ 𝑋௜

ᇱ𝛼ሻ is the indicator function as follows: 

𝐼ሺ𝑌௜ െ 𝑋௜
ᇱ𝛼ሻ ൌ ൜

0, 𝑌௜ െ 𝑋௜
ᇱ𝛼 ൒ 0

1, 𝑌௜ െ 𝑋௜
ᇱ𝛼 ൏ 0

                                                           (5) 

3. Methodology 

3.1 LSTMQR model 
The explanatory and responsive variables of real problems mostly show nonlinear relationships. Long 
and short-term memory neural networks (LSTM) [20] can well estimate nonlinearity and its gate structure 
can better handle long-term dependence information. Therefore, quantile regression combined with 
LSTM neural network can well quantify the uncertainty information of nonlinear relationships. The 
quantile loss function is as follows:  

𝐿𝑜𝑠𝑠 ൌ 𝑚𝑖𝑛௭,ௗ ෍ 𝛿ఓ ቀ𝑌௜ െ 𝑔൫𝑋௜, 𝑍መ, 𝑑መ൯ቁ
௦

௜ୀଵ
                                              (6) 

where 𝛿ఓሺ𝜎ሻ is the loss function shown in Equation (4), and 𝑍መ and 𝑑መ are the weights and biases of the 

LSTM, respectively. The function 𝑔൫𝑋௜, 𝑍መ, 𝑑መ൯ is optimized by continuously adjusting the weights and 
biases, and the expression of the optimal quantile at quantile point 𝜇 is as follows: 

𝑄෠௒ሺ𝜇|𝑋ሻ ൌ 𝑔൫𝑋, 𝑍መሺఓሻ, 𝑑መሺఓሻ൯                                                        (7) 

3.2 The optimized transfer learning model 
The LSTMQR model has initial weights that are typically created at random, and interval prediction 
performance is directly correlated with these weights. The genetic algorithm can help the model to obtain 
reliable initial parameters with its powerful global search capability [21]. The selection of the fitness 
function directly affects the genetic algorithm's convergence speed and global search ability. If the fitness 
evaluation function is not properly designed, a series of deception problems that prevent the generation 
of individuals with high fitness can occur, such as premature convergence and evolutionary stagnation 
[22].  

Therefore, this work adopts GASA to refine the initial weights matrix of LSTMQR to avoid the 
deception problem [23]. The minimization interval prediction evaluation is used as the fitness evaluation 
function, and the optimization search process is as Algorithm 1. 

The optimization process of the LSTMQR model 
based on GASA: 

Input: population size 𝑴, source domain dataset 𝑿, 

termination of evolution 𝑮 

Output: optimal individual 𝒐∗ 

1. Chromosomes encoded as a vector of 800×1; 

2. Initialized population 𝒑ሺ𝟎ሻ ൌ 𝑷𝟖𝟎𝟎ൈ𝑴; 

3. 𝑭 ← 𝑪𝑾𝑪𝒎𝒊𝒏;  

4. 𝒈 ൌ 𝟏; 

5. 𝑾𝒉𝒊𝒍𝒆 𝒈 ൏ 𝑮 

6.       𝒇𝒐𝒓 𝒎 ൌ 𝟏, … , 𝑴  

7.           𝒇ሺ𝟎ሻ ← 𝑭ሺ𝒑ሺ𝟎ሻ, 𝑿ሻ;  

8.       𝑬𝒏𝒅 𝒇𝒐𝒓 
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9.       𝒐 ← 𝑺𝒆𝒍𝒆𝒄𝒕ሺ𝒑ሺ𝟎ሻ, 𝒇ሺ𝟎ሻ, 𝑮𝒈𝒂𝒑ሻ;  

10.       𝒐 ← 𝑹𝒆𝒄𝒐𝒎𝒃𝒊𝒏ሺ𝒐, 𝑷𝒄ሻ;  

11.       𝒐 ← 𝑴𝒖𝒕𝒂𝒕𝒆ሺ𝒐, 𝑷𝒎ሻ;  

12.        𝒇ᇱሺ𝟎ሻ ← 𝑭ሺ𝒐, 𝑿ሻ;  

13.      𝒐 ← 𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓ሺ𝒐, 𝒑𝑺, 𝒑𝑹, 𝒑𝑰ሻ;  

14.      𝒇ᇱᇱሺ𝟎ሻ ← 𝑭ሺ𝒐, 𝑿ሻ;  

15.      According to 𝒑𝑫 ൌ ቊ
   𝟏                , 𝜟𝑬 ൒ 𝟎

𝒆𝒙𝒑ሺെ
𝜟𝑬

𝑻
ሻ, 𝜟𝑬 ൏ 𝟎  to 

determine whether to update; /*where 𝜟𝑬 ൌ

𝒇ᇱᇱሺ𝟎ሻ െ 𝒇ᇱሺ𝟎ሻ；𝑻 is the temperature */ 

16.      𝒐 ← 𝑹𝒆𝒊𝒏𝒔ሺ𝒐, 𝒑ሺ𝟎ሻሻ;  

17.      𝒇ᇱᇱᇱሺ𝟎ሻ ← 𝑭ሺ𝒐, 𝑿ሻ;  

18.      𝒊𝒇 𝒇ᇱᇱᇱ ൐ 𝒇∗  

19.         𝒇∗ ൌ 𝒇ᇱᇱᇱ;  

20.         𝒐∗ ⇐ 𝒐;  

21.      𝒆𝒍𝒔𝒆  

22.         𝒐∗ ⇐ 𝒑ሺ𝟎ሻ;  

23.      𝑬𝒏𝒅 𝒊𝒇 
24. 𝑬𝒏𝒅 𝑾𝒉𝒊𝒍𝒆 

 

The proposed method in this paper combines deep learning and quantile regression to quantify the 
uncertainty information of the electric load and uses GASA to optimize the performance of transfer 
learning. The prediction framework mainly consists of an optimized pre-training stage and a fine-tuning 
stage. 

(1) Optimized pre-training stage 
In this phase, we will construct a deep learning quantile regression model, train it using data from the 

source domain, and then implement the GASA algorithm to optimize its initial weight matrix (considering 
that the learned knowledge in transfer learning will be reflected in the weight matrix, so this paper chooses 
to optimize the model in the pre-training rather than the fine-tuning phase). The parameters are output 
when the global optimal solution is obtained and the model is retrained with the optimal initial weights 
to fully learn the knowledge of the distribution features of the source data.  

Meanwhile, considering the complex structure of the LSTMQR model, the key layers including the 
input and hidden layers of the source model are frozen. In this way, the integrity of the parameters is 
ensured. 

(2) Fine-tuning stage 
A new LSTMQR model will be constructed as the target model in this phase. The corresponding 

network layers in the target model are replaced by unfreezing the transfer layers obtained in the previous 
stage. Then, the weights of the fully connected layer in the target model would be initialized. Train the 
target model with the training and validation sets from the target domain data. The important 
hyperparameters are also adjusted to fit the data distribution characteristics of the target domain. Finally, 
the prediction intervals for different quartiles of future load are obtained using the test set according to 
interval construction theory. The interval prediction results under different models and different strategies 
are evaluated with the above four metrics. 



2023 3rd International Conference on Power System and Energy Internet
Journal of Physics: Conference Series 2661 (2023) 012033

IOP Publishing
doi:10.1088/1742-6596/2661/1/012033

5

4. Case studies 

4.1 Data Sources 
This paper is validated using actual load data from New York State, USA, sourced from the NYISO. Data 
from the source domain and data from the target domain make up the loaded dataset, where the first has 
8, 670 items and have a data scale from Jan. 1 to Dec. 31, 2019, for Western New York State’s 1-hour 
electrical load values (MW).  

The latter is the NYC 1-hour electrical load values (MW) data granularity, which includes 2, 160 entries with 
data scales from Jan. 1 to Mar. 31, 2019. Jan. 1 to Mar. 17 data are used to train the models. Mar. 18 to Mar. 24 data 
are used to adjust the parameters of the models. The effectiveness of interval forecasting is evaluated using data 
from Mar. 25 to Mar. 31. 

4.2 Parameter setting  
The algorithm parameters are configured as follows to ensure that the GASA algorithm quickly converges 
to the global standards of excellence: the per-generation gap 𝐺௚௔௣  in GA is 0.95; 𝑃௖  is 0.7 for the 
crossover probability; 𝑃௠ is 0.01 for the variation probability. The probability of selecting the exchange 
structure 𝑝ௌ in the simulated annealing algorithm is 0.2; 𝑝ோ is 0.5; 𝑝ூ is 0.3; 5 cycles for the inner layer 
and 10 cycles for the outer layer; the initial temperature 𝑇 is 0.025; and the cooling factor is 0.98. 

4.3 Metrics 
Two measures, FICP and FINAW, are chosen for evaluation to confirm the prediction performance of 
the abovementioned models. They are defined as follows: 

𝐹𝐼𝐶𝑃 ൌ
ଵ

௞
∑ 𝜀௧

௞
௧ୀଵ ൈ 100%                                                   (8) 

𝐹𝐼𝑁𝐴𝑊 ൌ
ଵ

௞ோ
∑ ሺ𝑈௧ െ 𝐿௧ሻ௞

௧ୀଵ ൈ 100%                                        (9) 

where 𝜀௧ denotes the coverage state of the prediction interval, if the true value 𝑦௧ is covered by the higher 
limit 𝑈௧  and the bottom level 𝐿௧  of the prediction interval, then 𝜀௧ ൌ 1 ; otherwise 𝜀௧ ൌ 0 . 𝑅  is the 
variation in the actual value 𝑦௧ between its highest and lowest values. 

However, both of these metrics evaluate only one aspect of the prediction interval individually. The 
CWC, which is frequently used in practical issues to assess overall quality, is expressed as follows: 

𝐶𝑊𝐶 ൌ 𝐹𝐼𝑁𝐴𝑊൫1 ൅ 𝜉eିఎሺிூ஼௉ିఛሻ൯                                           (10) 
 

𝜉 ൌ ቄ
0, 𝐹𝐼𝐶𝑃 ൒ 𝜏
1, 𝐹𝐼𝐶𝑃 ൏ 𝜏                                                            (11) 

where 𝜉 and 𝜂 are the determining parameters, 𝜂 ൌ 10, 𝜉 depends on whether the FICP reaches a given 
confidence level 𝜏. In addition, quantile scoring (QS) was used to evaluate the sharpness and reliability 
of the quantile regression, with the following expression: 

𝐿௜൫𝜇, 𝑦௜, 𝑦ො௜,ఓ൯ ൌ 𝑚𝑎𝑥 ൬ቀ ఓ

ଵ଴
െ 1ቁ ൫𝑦௜ െ 𝑦ො௜,ఓ൯,

ఓ

ଵ଴
൫𝑦௜ െ 𝑦ො௜,ఓ൯൰                           (12) 

 

𝑄𝑆 ൌ
ଵ

ெഋெ
 ෎ ෍ 𝐿௜൫𝜇, 𝑦௜, 𝑦ො௜,ఓ൯

ெ

௜ୀଵ

ெഋ

ఓୀଵ

                                        (13) 

where 𝐿௜ is the quantile score of the 𝑖-th load point, 𝑦௜ denotes the 𝑖-th actual load, the quantile score of 
the i-th load point at quantile 𝜇 is represented by 𝑦ො௜,ఓ ,  the numbers of quantile sites and loads are 
represented by 𝑀ఓ and 𝑀, respectively. 
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4.4 Experimental Results 

4.4.1 Performance comparison of pre-trained models. The results of the pre-trained models' interval 
prediction are displayed in Table 1. Compared with ENNQR, GRUQR, and LSTMQR improve QS by 
61.15% on average and PICP by 61.22% on average. This is attributed to their complex internal gate 
structure that can consistently mine the internal relationships of time series at different quantile points. 
LSTMQR, on the other hand, achieves better interval prediction results with its excellent ability to 
handle long-term dependent information. However, under the non-migration strategy, none of their 
PICPs reached the given confidence level. 

 
Table 1. Interval Prediction Results of The Pre-trained Models. 

Model PICP (%) PINAW (%) QS 

ENNQR 32.73 5.20 85.03 

GRUQR 86.06 9.43 33.05 

LSTMQR 87.88 8.60 33.01 

4.4.2 Analysis of optimization effects. Figure 1 displays the outcomes of the search for optimization. 
GASA optimizes the weights in 30 generations with the lowest CWC as the goal. It can be seen that the 
CWC is 15% in the 1st generation and the global optimal solution is obtained after 5 evolutions. The 
CWC at the 16th generation is 13.4%. This shows that the GASA can efficiently improve the 
convergence speed.  

 

Figure1. GASA optimization process. 

4.4.3 Ablation experiment. Figure 2 displays the interval prediction outcomes of the model used in this 
study. The findings show that OTL-LSTMQR covers the majority of the real values within a narrow FI 
width. Compared with the other strategies in Table 2, the performance of interval prediction can be 
enhanced by the suggested policy. It can be seen that the addition of the transfer strategy brings the PICP 
closer to the confidence level. However, this improvement is at the expense of interval width. The 
addition of the optimized transfer strategy effectively solves this problem. The model can reach the 
confidence level while the PINAW becomes 68.25% narrower than the previous strategy. 
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Figure 2. Prediction interval at 95% confidence level. 
 

Table 2. Interval Prediction Results for Different Strategies. 

Model LSTMQR TL-LSTMQR OTL-LSTMQR 

PICP (%) 87.88 94.55 95.15 

PINAW (%) 8.60 57.00 18.10 

CWC (%) 3527.05 182.52 18.10 

QS 33.05 241.88 71.98 

5. Conclusion 
Decision-making about the grid depends on the accurate measurement of uncertainty information in 
electric demand. In this paper, an optimized transfer learning-based method for short-term load-interval 
prediction is proposed for the problem of poor forecasting performance due to insufficient historical load 
samples. After experimental analysis, the following conclusions can be obtained: 

(1) The fitness evaluation function's design and the SA embedding effectively avoid the possible 
deception problem of GA. It enables the combinatorial optimization algorithm to find the global optimal 
solution in a short number of iterations. 

(2) Comparing with ENNQR, GRUQR, LSTMQR, and TL-LSTMQR, the proposed strategy in this 
paper achieves the narrowest FINAW under the condition of satisfying the pre-defined interval coverage. 
this proves its superior interval prediction performance. The superior interval prediction performance is 
demonstrated. 
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