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Abstract: Projection-based multimodal 3D semantic segmentation methods suffer from 

information loss during the point cloud projection process. This issue becomes more prominent 

for small objects. Moreover, the alignment of sparse target features with the corresponding object 

features in the camera image during the fusion process is inaccurate, leading to low segmentation 

accuracy for small objects. Therefore, we propose an attention-based multimodal feature 

alignment and fusion network module. This module aggregates features in spatial directions and 

generates attention matrices. Through this transformation, the module could capture remote 

dependencies of features in one spatial direction. This helps our network precisely locate objects 

and establish relationships between similar features. It enables the adaptive alignment of sparse 

target features with the corresponding object features in the camera image, resulting in a better 

fusion of the two modalities. We validate our method on the nuScenes-lidar seg dataset. Our 

CAFNet achieves an improvement in segmentation accuracy for small objects with fewer points 
compared to the baseline network, such as bicycles (6% improvement), pedestrians (2.1% 

improvement), and traffic cones (0.9% improvement). 

1. Introduction 
Three-dimensional semantic segmentation is an essential visual task for scene understanding in 

autonomous driving. Its objective is to categorize each minimal unit of input modal information. The 

development of self-driving cars has been driven by advancements in artificial intelligence and an 

increasing number of sensors that are integrated into cars. Among these sensors, the camera is one of 

the most widely deployed ones, providing rich semantic and obstacle-shape information. However, 

camera images lack depth information and are susceptible to light conditions. The LiDAR sensor, also 

an advanced vehicle sensor, can capture precise spatial location and three-dimensional information about 

the environment and obstacles around the car. Nevertheless, the point cloud from LiDAR is sparse, 

resulting in insufficient details for obstacle representation, making it challenging to distinguish objects 

with similar appearances. This problem becomes more severe when dealing with small objects at long 

distances. Over the years, there has been a growing trend of equipping vehicles with both cameras and 

LiDAR sensors. Sensor fusion techniques have emerged as a research hotspot, aiming to integrate the 

information from these two types of sensors, leveraging their complementary strengths, and achieving 
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accurate and reliable environmental perception. 

Based on the number of input modalities, there are two kinds of semantic segmentation methods: 

single-sensor methods and multi-sensor methods. The former includes camera-based methods and 

LiDAR-based methods. FCN [1] is used for image semantic segmentation and is the first full 

convolutional network for pixel-level prediction without the need for manual design. Wang et al. [2] 

enhance the semantic segmentation performance by incorporating dense upsampling and dilated 

convolutions. However, camera-based methods alone are unable to provide depth information of the 

surrounding environment for vehicles and are susceptible to changes in lighting conditions.  

LiDAR sensor data can be represented in different data forms, including the following three methods: 

(1) Point-based methods. This type of method directly utilizes the raw point cloud as input. Qi et al. 

[3] can learn features directly from a point cloud with multi-layer perceptron and realize point cloud 

invariance through pooling operation, which is suitable for classification, segmentation, and detection 

tasks. Qi et al. [4] introduce hierarchical point set abstraction layers to process more complex point 

cloud data, and these features from set abstraction layers are then used to complete specific prediction 

tasks. However, this series of methods struggle with handling sparse point clouds. 

(2) Voxel-based methods. We perform semantic segmentation by using the obtained voxel 

representation. Tang et al. [5] propose a sparse point-voxel convolution module, and this module adds 

minimal computational overhead and addresses the issue of information loss. Zhou et al. [6] present a 

cylindrical segmentation for 3D point cloud representation. This method shifts the emphasis of outdoor 

point cloud segmentation from a two-dimensional projection to a three-dimensional structure, allowing 

for a deeper investigation into the intrinsic features of outdoor point clouds. Nevertheless, voxel-based 

methods often have problems with information loss during the conversion of raw input to voxels and 

typically have high time and space complexity. 

(3) Projection-based methods. Zhang et al. [7] propose a new point cloud representation method. The 

method uses a polar coordinate system to encode point clouds, introducing a novel way of representing 

spatial information. Milioto et al. [8] convert point clouds into approximate 2D distance image 

representations through spherical projection. This method can employ any CNN backbone network for 

semantic segmentation and introduce a novel post-processing technique to restore consistent semantic 

information during inference. Multisensor methods combine LiDAR point clouds with camera images 

as input. Krispel et al. [9] establish point correspondences through RGB/LiDAR calibration and fuse 

feature representations from RGB and range images. The RGB features are warped based on the known 

correspondences to adapt them to the range image network. Zhuang et al. [10] project point clouds onto 

image coordinates and RGB images can have spatial information. It proposes a two-flow network that 

extracts features from point clouds and images and introduces additional perceptual losses. Yan et al. 

[11] propose a general training strategy for 2D prior-assisted semantic segmentation. It leverages 

multiscale fusion and knowledge distillation from auxiliary modalities to extract richer context 

information from multimodal data. 

In conclusion, the fusion of multiple sensors in computer vision can enhance perception capabilities 

effectively by combining data from different sensors, and enhance the adaptability of autonomous 

driving vehicle perception systems in different environments. However, most multimodal-based 

semantic segmentation algorithms utilize image information as decoration for point clouds. Yet, there 

are heterogeneities and perspective variations between the two modalities, making it crucial to 

effectively align and fuse the features from the two different modalities. Therefore, this paper proposes 

a coordinated attention-based module for aligning and fusing LiDAR information and image features, 

building upon the 3D semantic segmentation network PMF [10]. The complementary information in the 

images allows the model to accurately segment small objects with sparse point cloud data. The proposed 

feature fusion and alignment network dynamically learns the correlation and connectedness between 

point cloud features and their corresponding image features, establishing an adaptive association 

mechanism between the two feature extraction networks, thus fully utilizing the complementary 

information from both modalities. 
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2. Method 

2.1 Data processing 
We employ a projection-based method, which differs from other methods as it preserves the original 

information and applies it to real-world autonomous driving scenarios. Moreover, the range-view image 

obtained by using the above method is dense, compared to the original point cloud data, which possesses 

characteristics similar to camera images. Therefore, we can use a generic convolutional network to 

extract deep-level features of the point cloud, and the transformed range images are more amenable to 

feature alignment and fusion with camera images. 

Each point in the point cloud is composed of spatial coordinates (x, y, z) and reflection intensity r. 

As described in [8], the projection of point clouds into distance images can be represented as follows: 
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In the proposed approach, every point of the point cloud is encoded with a 5-dimensional feature 

representation. The (u, v) coordinates represent the pixel coordinates corresponding to a point in the 

projected image. The variables �and h represent the size of the projected image. 

According to Equation (1), each point can be coded for a 5-dimensional feature representation, and 

the feature vector includes the distance (d), spatial coordinates (x, y, z), and reflectance strength (r), i.e., 

(d, x, y, z, r). By applying Equation (1), the point cloud is transformed into a range-view image with 

dimensions (5, w, h). Because point clouds are not as dense as RGB images, there may be pixels in the 

range image that do not have matching points in the point cloud. Hence, these pixels are initialized with 

a value of 0. 

2.2 Network structure 

 
Figure 1. Network structure 

In this paper, the Projection-based Multimodal Fusion PMF [10] network is used as the basic network, 

which performs 3D semantic segmentation by taking camera images and LiDAR point clouds as input. 

It is a dual-stream network that extracts features from both modalities and fuses them by using a fusion 
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module. Additionally, a perceptual adversarial loss is employed to calculate the differences between two 

modalities of information. 

The overall CAFNet structure is shown in Figure 1, consisting of two parts: the SalsaNext [12] 

network which uses the range-view image as input, and the ResNet network for image segmentation. 

Both the range-view image segmentation network and the camera image segmentation network adopt 

an encoder-decoder architecture. The encoder units incorporate a set of residual connection blocks, while 

the decoder part combines the upsampled features from the residual blocks through skip connections. 

To begin with, the unordered point cloud data is converted to a dense range-view image 

representation that allows for standard convolutional operations. The 3D semantic segmentation 

network’s encoder is then employed to encode and extract features from the range-view image, while 

the ResNet is used as the camera image processing stream. Next, the features extracted from network 

layers of different dimensions are combined by using an attention-based feature fusion module. This 

fusion process generates fused features. Subsequently, the encoder outputs are upsampled through a 

decoder network to restore the original size, and class labels are generated for each pixel, producing the 

final result of semantic segmentation. 

2.3 Feature fusion module 
In the encoder module, every layer conducts downsampling by using convolutional and activation layers 

to extract features from various receptive fields. Additionally, adaptive pooling is used to resize the 

camera image features and range-view image features to the same size. Then, the extracted features are 

fused and aligned by the CAF module. The feature fusion module can be repeated multiple times in the 

encoder to achieve different levels of feature fusion. 

Due to the disparity in the field of view between LiDAR and the camera, there is no precise one-to-

one mapping between the target objects. When fusing the features from both modalities in the encoder, 

not all pixel features are equally important, and the information from the LiDAR depth features is 

unevenly aligned with each camera pixel. To better align the features from LiDAR with the most relevant 

camera features and complement the point cloud information with camera image information, we 

propose the Coordinate Attention Fusion (CAF) module. It utilizes coordinate attention mechanisms [13] 

to dynamically capture the correlation between the two modalities. The aforementioned structure is 

illustrated in Figure 2. 

 
Figure 2. CAF (Coordinate Attention Fusion) module 

To achieve the fusion, we first make the concatenation of the features from the two networks along 

the channel dimension and make the number of channels the same as the original convolutional layers. 

To better integrate image features into range-view image features, an attention module is introduced. 

The attention matrix is generated by convolutional and activation layers and then weighted onto the 

fused features. The fused features are further utilized as a complement to the original point cloud features 

through residual structures. However, the attention matrix generated by the convolutional layers can 

only capture local relationships and cannot model the crucial long-range dependencies for visual tasks. 

Therefore, the feature fusion module can establish the feature dependence relationship in space and 

channel dimension by introducing coordinate attention. 
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It has been demonstrated that channel attention is significantly effective in improving model 

performance by selectively emphasizing interdependent channel feature maps through the integration of 

correlation features among all channels. However, it does not contain positional information, which 

plays a crucial role in generating spatial attention maps. Positional attention weights the features from 

all positions and selectively aggregates features from each position. Similar features are thus correlated 

regardless of the distance between them. 

The CAF module encodes channel relationships and remote dependencies of features respectively, 

and provides accurate location information. The input to this module is the feature vector 

X=[��, ��, … , ��]∈ ��×	×
 from the attention residual structure described earlier. Given the input X, 

pooling is applied along the parallel coordinates and vertical coordinates separately with ranges of (H, 

1) and (1, W), respectively, effectively capturing information along the two dimensions separately. 

Therefore, the output of channel c at height h and width w can be defined as follows. 
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By combining the above equations, features are aggregated along two spatial directions, leading to 

the generation of a duo of attention matrices with directional information. These matrices enable the 

CAF module to establish extensive dependencies along one direction while preserving accurate 

positional details. This facilitates more accurate localization of the objects of interest and establishes 

connections between similar features in the CAF module. Consequently, the features of sparse point 

cloud targets are adaptively aligned with the corresponding object features in camera images, achieving 

the complementary effect of camera image features on point cloud features. 

3. Experiments 

3.1 Dataset  
Our method is evaluated in the nuScenes-lidar seg dataset [14], which is a multimodal dataset designed 

for perception tasks in self-driving, such as three-dimensional object detection, tracking, and 

segmentation. This dataset is the first to include data from a full suite of sensors for fully self-driving 

vehicles, all providing a complete panoramic view. There are 1, 000 scenarios in this dataset, with each 

lasting 20 seconds, and each of the 23 categories is labeled. In scenes-lidar seg, each point belonging to 

keyframes in the nuScenes dataset is annotated with one of 32 possible semantic labels. The scenes-lidar 

seg dataset comprises 1.5 billion annotated points in 34, 000 point clouds from 850 scenes. 

3.2 Evaluation metric 
In this paper, the Mean Intersection over Union (mIoU) is used to assess the performance of the model 

on point clouds. 

 
1

1 C
c

c c c c

TPmIoU
C TP FP FN	

	
� ��    (4) 

where ���, ��, and ��represent the true positives, false positives, and false negatives predictions 

of class c, and C represents the number of categories. 

3.3 Training and inference details 
The experimental setup is as follows. In terms of hardware, an Intel Xeon Silver 4210 processor and 

three NVIDIA RTX3090 24 G graphics cards were used. The software system consisted of Ubuntu 

18.04.06, CUDA version 11.3, and PyTorch version 1.10.1. A batch size of 24 and a training epoch of 
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50 were configured. The hybrid optimization method was employed to train networks, with SGD and 

Nesterov used for the RGB image segmentation network, and Adam [15] is used for the point cloud 

segmentation network. SGD [16] was employed for learning rate decay from 0.001 until it reached 0. 

Inference validation was performed after each training epoch. 

3.4 Results on nuScenes 
Table 1. Comparisons on the nuScenes-lidar seg validation set 
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The 3D semantic segmentation network CAFNet was validated on the nuScenes-lidar seg dataset. The 

average Intersection over Union (IoU) and per-class IoU for 16 object categories, as provided by the 

dataset, were compared with existing SOTA 3D semantic segmentation networks, as shown in Table 1. 

By examining the table, it is evident that the CAFNet attains an average Intersection over Union (IoU) 

of 76.8% for point cloud semantic segmentation, which demonstrated a 4.6% improvement in average 

IoU. Compared to the projection-based method Salsanext, it is 0.7% higher than the multi-view fusion 

method AMVNet and the voxel-based method Cylinder3D. 

Table 2. Comparison of IoU on small object segmentation 

Method mIoU (%) Bicycle Pedestrian Traffic-cone 

PMF [10] 76.9 46.6 80.9 70.9 

RPVNet [18] 77.6 43.4 80.5 66.0 

CAFNet (Ours) 76.8 52.6 83.0 71.8 
Bicycles, pedestrians, and traffic cones are commonly encountered as small objects in typical driving 

scenarios. Due to the limitations of laser radar (LiDAR) data acquisition, these object point clouds often 

exhibit limited quantity and partial occlusion. Moreover, in scenarios involving long distances, the point 

cloud becomes sparser, which further exacerbates the difficulty of segmenting small objects, thereby 

posing a challenge to the network. 

Table 2 compares the CAFNet with the baseline network PMF, as well as the point-distance-image-

voxel fusion-based RPVNet. Table 2 shows that our proposed network achieves a similar average 

Intersection over Union (IoU) to the baseline network PMF. However, there are notable improvements 

in bicycle segmentation precision (an increase of 6%), pedestrian segmentation precision (an increase 

of 2.1%), and traffic cone segmentation precision (an increase of 0.9%). In comparison to RPVNet, 
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although there is a certain gap in terms of average IoU, the segmentation precision for small objects like 

bicycles, pedestrians, and traffic cones has significantly improved. This validates the effectiveness of 

the CAF module in enhancing the segmentation performance for small objects. 

4. Conclusion 
Taking advantage of the coordinate attention mechanism, this research introduces a multimodal feature 

fusion and alignment network module, which is applied to point cloud semantic segmentation networks. 

The proposed module enables the network to locate and align two modalities of interest and establish 

connections between similar features. The efficacy of the CAF module in improving the segmentation 

precision of small objects is demonstrated through experiments conducted on the nuScenes-lidar seg 

public dataset. This validates the efficacy of the proposed network module in enhancing the alignment 

of small object features in multimodal networks. However, it should be noted that the CAF module does 

not achieve improvement in the precision for all objects compared to the SOTA methods. Potential future 

directions involve improving the segmentation precision by enhancing the representation of LiDAR raw 

data and feature extraction modules based on the proposed method. 
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