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Abstract: This paper proposes a research method to enhance the accuracy and real-time
capability of helmet detection in complex industrial environments, aiming to address the
engineering challenges of poor robustness and significant occurrences of both false positives and
false negatives in existing detection methods. In this study, the C2F (faster version of CSP
Bottleneck with two convolutions) module and FE (FasterNet with EMA) module are integrated
into the network architecture of YOLOVS to form a new attention mechanism module called
C2F-FE. This module enhances the model’s perception of safety helmet targets by fusing feature
information from different levels and incorporating attention mechanisms while reducing
computational overhead. Furthermore, the model is trained and optimized on publicly available
safety helmet datasets. Experimental results demonstrate that the improved model exhibits
stronger robustness, achieving an accuracy rate of 94.6% and a mAP50 of 99.1% for safety
helmet detection in complex construction scenarios, with an inference time of 0.7 ms.

1. Introduction
The benefits of artificial intelligence to human society are increasingly prominent [1]. Safety helmets
effectively reduce the risk of head injuries. However, due to workers’ negligence, improper wearing of
safety helmets always happens. Therefore, developing a system that can be widely deployed to detect in
real-time and alert the wearing condition of safety helmets for workers becomes crucial. In the past few
years, deep learning techniques have significantly progressed in computer vision. The YOLO (You Only
Look Once) series of single-stage object detection models have shown great potential in safety helmet
detection in industrial settings, compared to multi-stage methods such as RCNN, Fast-RCNN, and RPN,
as the YOLO series offers faster detection speed. YOLOVS [2], as the SOTA model in the YOLO series,
inherits the advantages of real-time performance, multi-scale feature fusion, and simplicity from
previous versions. It further improves accuracy, inference speed, and scalability. However, it has
relatively low FLOPS efficiency, redundant computations, and memory access and requires
improvement in balancing model size and accuracy. This study aims to integrate the EMA attention
mechanism [3] and PConv [4] into YOLOVS to develop an object detection technology that can detect
and alert the wearing condition of safety helmets in real time so that it can improve workers’ safety in
the industrial production process. The primary contributions of this research can be summarized as
follows:

1) The C2F-FE module is used for the YOLOVS framework, improving the accuracy, real-time
performance, and generalization ability of safety helmet detection;
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2) Training and evaluating the YOLOV8 model before and after the improvements and comparing
their performance are necessary;

3) An efficient and accurate safety helmet detection system is developed by adopting the improved
YOLOVS object detection model.

2. Method

2.1. The architecture of the modified YOLOVS

In this section, we optimize the architecture of the YOLOVS8 object detection network to achieve better
performance in safety helmet detection. As shown in Figure 1, the modified YOLOVS network
architecture includes the backbone, neck, and head components. The backbone network generates three
different scale feature maps, which are then fed into the neck for feature fusion. The fusion process
involves upsampling and concatenation operations, enabling a more comprehensive and enriched feature
representation. This helps improve the model’s detection, classification, and segmentation capabilities
in the prediction head. By leveraging the YOLOVS architecture, we aim to accurately improve the
model’s detection capability on safety helmets in various industrial scenarios.
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Figure 1. The architecture of the modified YOLOVS

2.2. Improved method

In this study, we introduce improvements to the YOLOVS8 model by replacing the original C2F module
with the C2F-FE module. The FasterNet within the C2F-FE module helps reduce redundant
computations and memory access, enabling more efficient extraction of spatial features. It achieves
higher running speeds across a diverse array of devices than other neural networks without sacrificing
the precision of different visual tasks. In the FasterNet Block, partial convolutions (PConv) are applied,
where only a few input channels are involved in feature extraction while the remaining channels remain
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unchanged, as shown in Figure 2. PConv exhibits lower floating-point operations (FLOPs) than
conventional convolutions while achieving higher FLOPs than depth-wise/group convolutions.
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Figure 2. Partial convolution (PConv)

At the same time, this study introduces the EMA mechanism. Compared to other attention
mechanisms such as CBAM, NAM [5], and CA [6], EMA performs better and demonstrates higher
efficiency regarding required parameters. This module aims to maintain channel information while
reducing computation workload. EMA divides the channel dimension into sub-features and evenly
distributes spatial semantic features. Extensive trials on widely adopted benchmarks like ImageNet, MS
COCO, and VisDrone2019 datasets [7] for object detection demonstrate that EMA achieves superior
performance without altering the network depth. The EMA module is integrated into the FasterNet
structure, resulting in the C2F-FE module, as depicted in Figure 3.
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Figure 3. C2F-FE module

3. Experiments

3.1. Experimental details

The experiments were conducted on a computer with an Intel Xeon (R) W-2145 CPU and NVIDIA
GeForce RTX 2080Ti GPU with 11 GB of VRAM, running the Ubuntu 18.04 operating system. PyTorch
version 1.12.0, CUDA version 12.0, and Python-Opencv version 4.6.0 are used. The experimental code
was modified based on the Ultralytics-YOLO framework, which offers ease of use, excellent
performance, and scalability. It can be utilized for various object detection tasks, including image
classification, object localization, and object segmentation. Additionally, the Ultralytics-YOLO
framework supports multiple hardware platforms, including CPU, GPU, and TPU.

3.2. Dataset preparation

In the experiment, the Hard Hat Workers dataset [8] was used for model training and performance testing.
The dataset consists of 7, 041 samples with corresponding labels and is divided into training and test
sets in a 3:1 ratio. The dataset supports multiple formats, including Pascal VOC [9], COCO, and
YOLOVS.

3.3. Evaluation metrics
The precision (accuracy) of the predicted bounding boxes is calculated by using the following formula:
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precision = _P (D
tp + fp

where tp is a binary array indicating whether the detection results are correct; fp, short for false positive,
is an occurrence in object detection where unrelated objects are incorrectly classified as target objects,
indicating a detection result that is not accurate. Additionally, the formula for calculating the recall of
the predicted bounding boxes is:
recall = _r 2
n, + eps

where the variable n; represents the number of labels. The default value for eps is 1e~®, which is used

to avoid division by zero. To ensure that the recall curve and precision curve start at (0, 0) and end at (1,
1) respectively, sentinel values are introduced. The modified recall and precision curves are referred to
as mrec (modified recall) and mpre (modified precision) respectively. Average Precision (AP) can be
computed based on these curves:

1
AP = f interp(x,mrec,mpre)dx 3)
0

where the Numpy [10] function np. interp (x, mrec, and mpre) performs linear interpolation based on
the reference points mrec and their corresponding values mpre. It calculates the interpolated result at the
given target point x. After that, by setting an Intersection over Union (IoU) threshold, we can obtain
metrics such as mAP50 and mAP50-95, which provide a more comprehensive evaluation of the model’s
performance. These metrics consider the precision and recall values at different IoU thresholds to assess
the model’s accuracy across a range of overlap criteria. Additionally, the Generalized Intersection over
Union (GloU) loss function is used in this experiment. GIoU considers the position, size, and shape
differences between bounding boxes. Therefore, GIoU is a suitable choice for the safety helmet detection
task. The specific calculation is as follows:

area(B U B’) — area(B)

GloU = IoU — =
area(B U B)
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where IoU represents the intersection over the union between the predicted bounding box B and the
ground truth labeled box B. It is calculated as the ratio of the intersection area between the two boxes to
their union area. The function calculates the area of the corresponding box.

3.4. Experimental results

The following experiments were conducted with 100 training iterations, using training images of size
and a batch parameter of 100. Neural network models were trained and tested to compare the detection
performance of YOLOVS before and after the improvements.

Table 1. YOLOv8 model performance

Class Precision Recall mAP50 mAP50-95
All 0.705 0.745 0.747 0.511
Head 0.852 0.960 0.962 0.675
Helmet 0.872 0.968 0.980 0.689
Person 0.393 0.306 0.300 0.170
Speed 1.2 ms
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Class Precision Recall mAP50 mAP50-95
All 0.831 0.802 0.842 0.610
Head 0.915 0.968 0.976 0.719
Helmet 0.946 0.979 0.991 0.738
Person 0.63 0.459 0.559 0.373
Speed 0.7 ms
Table 3. Different models for safety helmet detection
Models Precision Recall mAPS50 Average FPS
RPN 0.597 0.894 0.779 101
Fast-RCNN 0.672 0.881 0.774 97
YOLOVS5 0.893 0.872 0.846 105
Ours 0.946 0.979 0.991 135

When examining the data in Table 1 and Table 2, it can be deduced that the improved YOLOVS
demonstrates enhanced accuracy compared to the original version, while reducing the inference time.
Table 3 presents the comparison results with other existing methods. The testing performance on four
different industrial scenes is illustrated in Figure 4.
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4. Conclusion

In this research paper, we tackle the challenges of low FLOPS, redundant computations, and a limited
balance between model generalization and accuracy in existing helmet detection algorithms. We propose
an improved helmet detection method based on YOLOvVS, which involves refining the YOLOv8 network
architecture, incorporating the EMA attention mechanism and PConv into YOLOVS’s bottleneck
module, handling the helmet dataset, and training the model with specific parameters. Experimental
results demonstrate that our improved helmet detection method performs excellently in testing accuracy
and speed. The precision is improved by 0.126, mAPS50 is increased by 0.095, and the inference speed
is reduced. In future work, we will collect more positive and negative samples from real-world scenarios
to enhance the generalization capability of the network. Additionally, we plan to deploy this algorithm
on monitoring devices or detection robots for practical applications.
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