Paper The following article is Open access

Determination of the astrophysical factor of the 3He(α,γ)7Be down to zero energy using the asymptotic normalization coefficient method

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation M. La Cognata et al 2023 J. Phys.: Conf. Ser. 2586 012093 DOI 10.1088/1742-6596/2586/1/012093

1742-6596/2586/1/012093

Abstract

The observation of neutrinos emitted in the pp chain and in the CNO cycle can be employed to test the Standard Solar Model. The 3He(α,γ)7Be reaction is the first reaction of the 2nd and 3rd branch of the pp chain, so the indetermination of its cross section significantly affects the predicted 7Be and 8B neutrino fluxes. Notwithstanding its relevance and the great deal of experimental and theoretical papers, information of the reaction cross section at energies of the core of the Sun (15 keV - 30 keV) is sparse and additional experimental work is necessary to attain the target (~ 3%) accuracy. The precise understanding of the external capture component to the 3He(α,γ)7Be reaction cross section is pivotal for the theoretical assessment of the reaction mechanism. In this work, the indirect measurement of this external capture component using the Asymptotic Normalization Coefficient (ANC) technique is discussed. To extract the ANC, the angular distributions of deuterons yielded in the 6Li(3He,d)7Be α-transfer reaction were detected with high precision at E3He=3.0 MeV and 5.0 MeV. The ANCs were then deduced from the juxtaposition of DWBA and CC calculations with the experimental angular distributions and the zero energy astrophysical S-factor for 3He(α,γ)7Be reaction was calculated to equal 0.534 ± 0.025 keVb. Both our experimental and theoretical approaches were tested through the analysis of the 6Li(p,γ)7Be astrophysical factor, with further interesting astrophysical implications.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2586/1/012093