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Abstract. In this paper, we will use fluctuation dissipation theorem on the harmonic oscillator 
with time correlation creation annihilation operator as the perturbated term and through 
calculation, we find that the exact value of the dissipation associated Imχ of this special 
perturbation harmonic oscillator is exactly equal to π. Next, we give its potential application in 
the q-deformed harmonic oscillator, which means connect the q-deformed harmonic oscillator 
with fluctuation dissipation. 

1. Introduction 

The fluctuation-dissipation theorem (FDT) is a well-established result, first formulated by Nyquist [1] 

and later proved by Callen and Welton [2]. It connects the fluctuations of the product of two operators 

with the dissipation expressed through the imaginary part of their response function. In this article, we 

will fluctuation dissipation of simple harmonic oscillator with time correlation creation annihilation 

operator as perturbation term, then calculate the susceptibility function and the average over fluctuation. 

During the calculation, it is found that Im(χ(ω)) is a constant π. In the third part, we will discuss 

the practical application of this form of perturbation, which is an analogy of q-deformed Hamiltonian 

[3]. 

2. Fluctuation dissipation of simple harmonic oscillator with time correlation creation 

annihilation operator as perturbation term 

The pure quantum harmonic oscillator can be described by the Hamiltonian 𝐻̂0 = (𝑎̂†𝑎̂ + 1/2)ℏ𝜔 

where  𝑎̂†, 𝑎̂ correspond to the non-deformed annihilation and creation operators, respectively [4]. Let 

us consider the Hamiltonian perturbed by a term 

𝐻̂ = 𝐻̂0 + 𝐻̂′ = (𝑎̂†𝑎̂ + 1/2)ℏ𝜔 − 𝑎̂† 

(Remark: It is not self-adjoint on account of 𝑎̂†(𝑡). This term breaks the self-adjointness of the 

Hamiltonian and, therefore, nonphysical. However, we can see it’s potential application in section 3.) 

𝑎̂†(𝑡) is an operator in the Heisenberg picture, related to its Schrodinger representation through 

 

𝑎̂†(𝑡) = 𝑒𝑥𝑝(
𝑖𝐻̂0𝑡

ℏ
)𝑎̂𝑠

†𝑒𝑥𝑝(
−𝑖𝐻̂0𝑡

ℏ
) 

and 𝐻̂0 is the unperturbed Hamiltonian. 
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Under the condition t → −



 ⇒ 𝐻̂′ → 0, expanding the Dyson series, and the eigenstates of the total 

Hamiltonian become 

|𝜙𝑛⟩ = |𝑛⟩ −
𝑖

ℏ
∫ 𝑑𝑡′

𝑡

−



𝐻̂′(𝑡′)|𝑛⟩ = |𝑛⟩ −
𝑖

ℏ
∫ 𝑑𝑡′

𝑡

−



𝑎̂†(𝑡′)|𝑛⟩ 

where the last line corresponds to first-order perturbation theory, and |𝑛⟩  is a state of the 

unperturbed Hamiltonian with energy 𝐸𝑛  (i.e., 𝐻̂0|𝑛⟩ = 𝐸𝑛|𝑛⟩ ). 
The expected value of another arbitrary operator 𝑝̂(𝑡) is simply given by [5] [6] 

〈𝑝̂(𝑡)〉 =
1

𝑍
∑⟨𝜙𝑚|𝑝̂(𝑡)|𝜙𝑚⟩

𝑚

𝑒
−

𝐸𝑚
𝑘𝐵𝑇 

〈𝑝̂(𝑡)〉 =
1

𝑍
∑{⟨𝑚|𝑝̂(𝑡)|𝑚⟩

𝑚

+
𝑖

ℏ
∫ 𝑑𝑡′

𝑡

−



𝜑(𝑡′)⟨𝑚|[𝑝̂(𝑡), 𝑞̂(𝑡′)]|𝑚⟩}𝑒
−

𝐸𝑚
𝑘𝐵𝑇 

Where Z = ∑ 𝑒
−

𝐸𝑚
𝑘𝐵𝑇

m  is the partition function at temperature T [7]. 

Thus in the above Hamiltonian, given the φ = 1, and has the intrinsic energy of the simple 

harmonic oscillator is 𝐸𝑚 = ℏ𝜔(𝑚 + 1/2), and if let the another operator 𝑝̂(𝑡) = 𝑎̂(𝑡), thus 

〈𝑎̂(𝑡)〉 =
1

𝑍
∑{⟨𝑚|𝑎̂(𝑡)|𝑚⟩

𝑚

+
𝑖

ℏ
∫ 𝑑𝑡′

𝑡

−



⟨𝑚|[𝑎̂(𝑡), 𝑎̂†(𝑡′)]|𝑚⟩}𝑒
−

ℏ𝜔(𝑚+1/2)
𝑘𝐵𝑇  

The first term reduced to ⟨𝑚|𝑎̂(𝑡)|𝑚⟩ = ⟨𝑚|𝑎̂𝑆|𝑚⟩, recast it as 

〈𝛿𝑎̂(𝑡)〉 = 〈𝑎̂(𝑡) − 𝑎̂(−



)〉 = ∫ 𝑑𝑡′ 𝜒(𝑡 − 𝑡′) 

where susceptibility function is [5] 

𝜒(𝑡 − 𝑡′) =
𝑖

ℏ𝑍
𝜃(𝑡 − 𝑡′) ∑⟨𝑚|[𝑎̂(𝑡), 𝑎̂†(𝑡′)]|𝑚⟩

𝑚

𝑒
−

ℏ𝜔(𝑚+1/2)
𝑘𝐵𝑇  

Using the closure relation |𝑛⟩⟨𝑛| = 𝐼, we can write 

⟨𝑚|[𝑎̂(𝑡), 𝑎̂†(𝑡′)]|𝑚⟩ = ∑{⟨𝑚|𝑎̂𝑆|𝑛⟩⟨𝑛|𝑎̂𝑠
†|𝑚⟩ − ⟨𝑚|𝑎̂𝑠

†|𝑛⟩⟨𝑛|𝑎̂𝑆|𝑚⟩}

𝑛

𝑒𝑖𝜔(𝑚−𝑛)(𝑡−𝑡′) 

taking the time Fourier transform to work in frequency space, here we have 

∫ 𝑑𝑡


0

𝑒𝑖𝜔′𝑡 =
𝑖

𝜔′ + 𝑖𝜖
 

Thus  

𝜒(𝜔′) = ∫ 𝑑𝑡 𝜒(𝑡)𝑒𝑖𝜔′𝑡 

After calculation, we can get 

𝜒(𝜔′) =
−1

𝑍
∑⟨𝑚|𝑎̂𝑆|𝑛⟩⟨𝑛|𝑎̂𝑠

†|𝑚⟩

𝑚,𝑛

 

In fact, by changing the frequency of the simple harmonic oscillator such that ω′ = ω 

𝜒(𝜔) =
−1

𝑍
∑⟨𝑚|𝑎̂𝑆|𝑛⟩⟨𝑛|𝑎̂𝑠

†|𝑚⟩

𝑚,𝑛

𝑒−ℏ𝜔(𝑚+1/2)/𝑘𝐵𝑇 − 𝑒−ℏ𝜔(𝑛+1/2)/𝑘𝐵𝑇

ℏ𝜔(𝑚 − 𝑛 + 1) + 𝑖𝜖
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the dissipation associated to 𝜒 can be written 

Im(𝜒(𝜔)) = (1 − 𝑒−ℏ𝜔/𝑘𝐵𝑇)
π

Z
∑⟨𝑚|𝑎̂𝑆|𝑛⟩⟨𝑛|𝑎̂𝑠

†|𝑚⟩

𝑚,𝑛

𝑒−ℏ𝜔(𝑚+1/2)/𝑘𝐵𝑇𝛿(𝑚 − 𝑛 + 1) 

We can make reasonable settings 𝑎̂𝑆 = 𝑎̂ and 𝑎̂𝑠
† = 𝑎̂†

 when t = 0 Thus 

Im(𝜒(𝜔)) = (1 − 𝑒−ℏ𝜔/𝑘𝐵𝑇)
π

Z
∑⟨𝑚|𝑎̂|𝑚 + 1⟩⟨𝑚 + 1|𝑎̂†|𝑚⟩

𝑚

𝑒−ℏ𝜔(𝑚+1/2)/𝑘𝐵𝑇 

Notice the identity 

𝑎̂|𝑚 + 1⟩ = √𝑚 + 1|𝑚⟩ 

𝑎̂†|𝑚 + 1⟩ = √𝑚 + 1|𝑚 + 1⟩ 

Insert the two identity in Im(𝜒(𝜔)) 

Im(𝜒(𝜔)) = (1 − 𝑒−ℏ𝜔/𝑘𝐵𝑇)
π

Z
∑(𝑚 + 1)

𝑚

𝑒−ℏ𝜔(𝑚+1/2)/𝑘𝐵𝑇 

Let’s do some math skills, Multiply 𝑒−ℏ𝜔/2𝑘𝐵𝑇  on both numerator and denominator 

Im(𝜒(𝜔)) = (1 − 𝑒−ℏ𝜔/𝑘𝐵𝑇)
π

𝑒−ℏ𝜔/2𝑘𝐵𝑇Z
∑(𝑚 + 1)

𝑚

𝑒−ℏ𝜔(𝑚+1)/𝑘𝐵𝑇 

Absorbing m + 1 into the differential form 

Im(𝜒(𝜔)) = (1 − 𝑒−ℏ𝜔/𝑘𝐵𝑇)
π

𝑒−ℏ𝜔/2𝑘𝐵𝑇Z
∑

𝑘𝐵𝑇

−ℏ
𝑚

𝑑𝑒−ℏ𝜔(𝑚+1)/𝑘𝐵𝑇

𝑑𝜔
 

Im(𝜒(𝜔)) = (1 − 𝑒−ℏ𝜔/𝑘𝐵𝑇)
π

𝑒−ℏ𝜔/2𝑘𝐵𝑇Z

𝑑 ∑ 𝑒−ℏ𝜔(𝑚+1)/𝑘𝐵𝑇
𝑚

𝑑𝜔

𝑘𝐵𝑇

−ℏ
 

Let’s look at the denominator now 

𝑒−ℏ𝜔/2𝑘𝐵𝑇Z = ∑ 𝑒−ℏ𝜔(𝑚+1)/𝑘𝐵𝑇

m

 

Reverse Taylor expansion 

∑ 𝑒−ℏ𝜔(𝑚+1)/𝑘𝐵𝑇

m

= e−ℏ𝜔/𝑘𝐵𝑇
1

1 − e−ℏ𝜔/𝑘𝐵𝑇
=

1

eℏ𝜔/𝑘𝐵𝑇 − 1
 

Notice this is the Bose-Einstein distribution function [7]. Let’s denote it as  

n(ω) =
1

eℏ𝜔/𝑘𝐵𝑇 − 1
 

Thus Im(𝜒(𝜔)) can be written a 

Im(𝜒(𝜔)) =
eℏ𝜔/𝑘𝐵𝑇 − 1

eℏ𝜔/𝑘𝐵𝑇

π

n(ω)

dn(ω)

dω

𝑘𝐵𝑇

−ℏ
=

1

eℏ𝜔/𝑘𝐵𝑇

𝜋

𝑛(𝜔)2

𝑑𝑛(𝜔)

𝑑𝜔

𝑘𝐵𝑇

−ℏ
 

⇒ Im(𝜒(𝜔)) =
π

deℏ𝜔/𝑘𝐵𝑇/dω

d
1

n(ω)

dω
 

⇒ Im(𝜒(𝜔)) = π
d

1
n(ω)

deℏ𝜔/𝑘𝐵𝑇
= π 
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So under the such Hamiltonian, the Im(𝜒(𝜔)) is a constant π. Notice the definition of the average 

over fluctuations is 

S(t − t′) = 〈𝑎̂(𝑡)𝑎̂†(𝑡′)〉 = ∫
dω

2π
S(ω)e−iω(t−t′) 

S(ω) = 2ℏ(n(ω) + 1)Im(𝜒(𝜔)) 

Thus insert Im(𝜒(𝜔)) = π into S(ω) 

S(ω) = 2πℏ(n(ω) + 1) = h(n(ω) + 1) 

where h is Planck constant. 

Therefore, we can calculate the average value of the generated annihilation operators over time 

〈𝑎̂(𝜔1)𝑎̂†(𝜔2)〉 = ∫ dt1dt2 eiω1t1+iω2t2〈𝑎̂(𝑡1)𝑎̂†(𝑡2)〉 = 2πδ(ω1 + ω2)S(ω1) 

〈𝑎̂(𝜔1)𝑎̂†(𝜔2)〉 = 2πh(n(ω1) + 1)δ(ω1 + ω2) 

Using the same way, the Fourier transform of the fluctuation 〈𝑎̂†(𝜔2)𝑎̂(𝜔1)〉 

〈𝑎̂†(𝜔2)𝑎̂(𝜔1)〉 = 2πhn(ω1)δ(ω1 + ω2) 

Note that the amount we can observe is only Hermitian, and the symmetrized product is 

Hermitian. 

1

2
〈𝑎̂(𝜔1)𝑎̂†(𝜔2) + 𝑎̂†(𝜔2)𝑎̂(𝜔1)〉 = 2πh(n(ω1) +

1

2
)δ(ω1 + ω2) 

Similarly, annihilation operator as perturbation term can be made 

𝐻̂ = 𝐻̂0 + 𝐻̂′ = (𝑎̂†𝑎̂ + 1/2)ℏ𝜔 − 𝑎̂(𝑡) 

3. Application of Hamiltonian of the above form  

When a q-deformation is applied to the above system, the Hamiltonian is modified to the form [3]: 

𝐻̂𝑞 =
1

2
(𝐴̂†𝐴̂ + 𝐴̂𝐴̂†) 

where 𝐴̂ and its adjoint 𝐴̂†
 are the deformed annihilation and creation operators, respectively, the 

oscillator described by the Hamiltonian 𝐻̂𝑞 is called the q-deformed harmonic oscillator. 

 The operators 𝐴̂ and 𝐴̂†
 obey the deformed commutation relation 

𝐴̂𝐴̂† − 𝑞2𝐴̂†𝐴̂ = 𝐼 

where 0 < q < 1. 

I hope to use the fluctuation dissipation theorem, so rewrite the above form 

𝐻̂𝑞 =
1

1 + 𝑞2
𝐻̂0 =

1

1 + 𝑞2
(ℏ𝜔(𝑎̂†𝑎̂ +

1

2
)) 

Perform Taylor expansion and remove the higher-order terms 

𝐻̂𝑞 =
1

1 + 𝑞2
𝐻̂0 = 𝐻̂0 − 𝑞2𝐻̂0 

Notice if q is much smaller than 1, ℏ𝜔𝑞2/2 can be ignored. Thus 

𝐻̂𝑞 =
1

1 + 𝑞2
𝐻̂0 = 𝐻̂0 − 𝑞2ℏ𝜔𝑎̂†𝑎̂ 
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Notice 𝐻̂𝑞 not equals 𝐻̂𝑞
†
, thus this is also nonphysical. Therefore, we can consider the following 

disturbance forms: 

𝐻̂ = 𝐻̂0 − 𝜆𝑎̂†(𝑡)𝑎̂(𝑡) 

The operation steps are similar to deal with 𝐻̂ = (𝑎̂†𝑎̂ + 1/2)ℏ𝜔 − 𝑎̂†. 

4. Conclusion 

By focusing on 𝐻̂ = (𝑎̂†𝑎̂ + 1/2)ℏ𝜔 − 𝑎̂† , this paper finds that the results of this form of fluctuation 

dissipation are not complicated, and even unexpectedly simple and clear, at the same time, an 

application of this 𝐻̂ = (𝑎̂†𝑎̂ + 1/2)ℏ𝜔 − 𝑎̂† is illustrated, that is, −𝜆𝑎̂†(𝑡)𝑎̂(𝑡) simulated from the 

q-deformed Harmonic Oscillator. 

5. Appendix 

Kramers-Kronig Relations [5] [6]: 

𝜒𝐵,𝐴(𝜔) =
−1

𝑍
∑⟨𝑛|𝐵|𝑚⟩⟨𝑚|𝐴|𝑛⟩

𝑚,𝑛

𝑒−𝐸𝑛/𝑘𝐵𝑇 − 𝑒−𝐸𝑚/𝑘𝐵𝑇

ℏ𝜔 + 𝐸𝑛 − 𝐸𝑚 + 𝑖𝜖
 

as 𝜒𝐵,𝐴(𝜔) is also a complex-valued function along the real axis, so accordingly 

𝜒𝐵,𝐴(𝜔) = 𝜒′𝐵,𝐴(𝜔) + 𝑖𝜒′′𝐵,𝐴(𝜔) 

And 

𝜒′𝐵,𝐴(𝜔) =
1

ℏ
𝑃𝑉 ∫ 𝑑𝜔′

𝜒′′𝐵,𝐴(𝜔′)

𝜔′ − 𝜔
 

𝜒′′𝐵,𝐴(𝜔) = −
1

ℏ
𝑃𝑉 ∫ 𝑑𝜔′

𝜒′𝐵,𝐴(𝜔′)

𝜔′ − 𝜔
 

Here 

𝑃𝑉 ∫ 𝑑𝜔′ = ∫ 𝑑𝜔′
𝜔−0

−



+ ∫ 𝑑𝜔′


𝜔+0

 

is called the (Cauchy) principal value integral, and the above relations follow immediately from  

𝜒𝐵,𝐴(𝜔) =
1

𝜋
∫ 𝑑𝜔′

𝜒′′𝐵,𝐴(𝜔′)

𝜔′ − 𝑧
=

1

2𝜋𝑖
∫ 𝑑𝜔′

𝜒𝐵,𝐴(𝜔′ + 𝑖𝜖) − 𝜒𝐵,𝐴(𝜔′ − 𝑖𝜖)

𝜔′ − 𝑧
 

which in turn follows from the Residue Theorem because of the mentioned analytical and asymptotic 

properties of  the susceptibility 𝜒𝐵,𝐴(𝜔). 
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