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Abstract. The Optimised Spacing Delivery (further referred to as OSD) tool has the objective 
of calculating the necessary time spacing between two consecutive departing aircraft in order to 
fulfil all required spacing and separation constraints. OSD, developed in SESAR 2020 Wave 1 
[1] is based on analytical models [2] to predict aircraft trajectory and speed profiles. The use of 
this tool by Air Traffic Controller supports the safe, consistent and efficient delivery of the 
required separation or spacing between consecutive departure pairs by providing the 
time required between departure aircraft pairs via an automated count-down timer to the tower 
runway controller. In order to improve OSD, this paper introduces the enhanced Optimised 
Spacing Delivery (further referred to as eOSD) tool which builds on the OSD tool using Machine 
Learning techniques to make more accurate predictions of aircraft behaviour (e.g. 
trajectory/climb profile, speed profile) and wind on the initial departure path, so further 
optimising spacing delivery between consecutive departures. Zurich airport data were used to 
develop and asses the performance of the eOSD tool compared to the OSD tool. 

 

1 Introduction 
Prior to the covid pandemic, airport capacity was considered one of the major bottlenecks in the 
European ATM system, with several major European airports being capacity constrained during the 
peak traffic periods. This in turn impacted the capacity of the overall European network. Traffic 
predictions show that traffic level will rise back and exceed 2019 traffic levels in the future putting 
significant pressure once again on the European Airport and network capacity. 
Runway throughput directly depends upon the applied spacing between successive aircraft on the final 
approach or on departure. The applied spacing is constrained by separation and spacing minima between 
aircraft either related to Wake Turbulence (WT) rules, runway spacing, radar separations or specific 
spacing minima when aircraft are using same departing routes. These separation requirements are 
expressed either in time (e.g., for WT between departures) or in distance (e.g., radar surveillance 
minima). 
Within the Single European Sky ATM Research (SESAR) programme, EUROCONTROL has been 
developing solutions to increase runway throughput at those airports that are capacity constrained 
without the need for additional infrastructure. These solutions have involved the development, for both 
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arrivals on the final approach and departures, of optimised separation / spacing minima, on one hand 
and, on the other hand, of controller support tools to optimize separation delivery and to enable the 
application of these more complex but more efficient minima. 
Amongst those solutions, in SESAR 2020 Wave 1, solution PJ.02-01-02, EUROCONTROL developed 
a Controller support tool allowing Optimised Spacing Delivery (OSD) for departures [1]. The OSD tool 
consists of an automatic digital countdown timer which provides an optimized clearance time ensuring 
that all separation and spacing constraints will be satisfied between the consecutive departure pair. The 
advantage of such a tool is that it also supports (and hence enables) the application of complex separation 
schemes, such as pairwise separation scheme or weather dependent separation, whether time or distance- 
based. 
For each aircraft pair, the OSD tool takes into consideration all applicable separation and spacing 
minima and displays the most constraining on the countdown timer. The calculation of the optimised 
clearance requires prediction models for the trajectory and the ground speed profile of both leader and 
follower aircraft both in the air and on the runway. In the OSD tool, these prediction models were 
calibrated using traditional analytical techniques. However, due to the variability of aircraft behaviour 
and wind on the initial departure path, the uncertainties related to the use of these analytical models can 
be significant. As a result, buffers must be added to the OSD clearance time calculations to ensure they 
are safe. Yet, these buffers are often over-conservative for some pairs which reduces the related 
achievable capacity benefits. 
The enhanced Optimised Spacing Delivery (eOSD) tool, presented in this paper, and developed in 
SESAR 2020 Wave 2, further improves the OSD tool by using Machine Learning (ML) techniques 
instead of traditional analytical techniques to more accurately predict aircraft departure behaviour, i.e. 
rolling time, rolling distance, airspeed profile and climb profile, and the associated model uncertainty. 
These more accurate predictions of aircraft behaviour allow the eOSD time calculations to be reduced 
compared to OSD through reductions of the required buffers. This leads to more efficient spacing 
delivery between departing aircraft and hence an increase in departure throughput during peak 
operations. This has a direct impact on network delays and on the environment. Furthermore, as the 
spacings are more accurately tailored per aircraft pair there is no negative impact on safety. 

The paper describes the eOSD solution and the ML techniques and models used to predict aircraft 
departure behaviour and the model uncertainty. Based on one year of Zurich airport operational 
surveillance and meteorological data, it also provides the initial results of the benefits that can be 
achieved with the use of ML techniques in the eOSD solution compared to the traditional analytical 
techniques used in the OSD tool. 

 

2 eOSD definition and design criteria 

2.1 General description 

The eOSD automated countdown timer is a tool that determines the clearance time between consecutive 
departing pairs of aircraft, ensuring that all separation and spacing constraints will be satisfied. As such, 
it has the same definition as the OSD automated countdown timer [1]; the difference lying in the way 
the clearance time is calculated. 
In order to predict the clearance time to be applied between a pair of departures, a model of the trajectory 
and the speed profile of the aircraft along the runway and in the air during the first phase of their flight 
is required. 
For that purpose, four Machine Learning (ML) models were defined: 1) a Rolling Time ML model, 2) 
a Rolling Distance ML model, 3) an Altitude to Time ML and, 4) a Time to True Air Speed (TAS) ML 
model. The rolling time and rolling distance models are needed to describe the aircraft when it is moving 
along the runway before the rotation point. The altitude to time model describes the time needed by the 
aircraft to reach a specific altitude while flying along the Standard Instrument Departure (SID) path. 
The time to TAS model provides the TAS of the aircraft as a function of time while the aircraft is flying 
along the SID route. The trajectory and speed profile were modelled this way as it is assumed that the 
altitude to time and time to TAS models, do not depend on the wind; meaning that wind data was not 
required for the training of these ML models. 



EASN-2022
Journal of Physics: Conference Series 2526 (2023) 012108

IOP Publishing
doi:10.1088/1742-6596/2526/1/012108

3

In addition to the four ML models required for predicting the trajectory and the speed profile of the 
aircraft, an additional ML model, called the buffer model, was also defined. The buffer ML model is 
required to cover any uncertainties caused from the previous four models as well as from the wind 
variability on the initial departure path. 
Finally, a set of coverage functions was introduced. The objective of the coverage functions is to ensure 
that for a given aircraft pair, the ML models are sufficiently reliable and can be used to support 
operations. If the aircraft pair is not considered covered by the coverage functions, the eOSD tool will 
output the required clearance time from the OSD solution (i.e. the clearance time based on traditional 
analytical techniques as opposed to Machine Learning) which will generally be more conservative. This 
coverage function is required to ensure the clearance times provided by the tool are always safe. 

 

2.2 Separation and spacing constraints 
Each airport has specific separation and spacing constraints that need to be adhered to during the 
departure phase of the aircraft. All of these constraints are taken into account by the eOSD tool, when 
defining the clearance time to be applied per departing aircraft pair. Specifically, for Zurich airport the 
following types of separation or spacing constraints have been taken into account (see also [1]): 

• Minimum Surveillance Radar Separation (MRS) 

• Vertical Separation (VS) at take-off (VS_TO) and in altitude (VS_Alt) 

• Runway occupancy time (ROT) 

• Standard Instrument Departure spacing (SID) 

• Time based wake turbulence separation (TBS) 

To derive the final clearance time to be applied per aircraft pair, the following three steps must be 
followed to ensure that all the necessary separation and spacing constraints are taken into account by 
the eOSD tool: 

• Step 1 - ensures that the Minimum Surveillance Radar Separation and the Vertical Separations 
are respected by taking the minimum time between the two. 

• Step 2 - takes into account this last defined value with the Standard Instrument Departure 
spacing and the Time-based wake turbulence separation taking the maximum time required 
between the three. 

• Step 3 - the maximum between this last value and the Runway Occupancy Time is taken as the 
final clearance time for the given flight pair. 

 

2.3 Assumptions 

In order for the eOSD tool to define safe, yet efficient, clearance times between departing aircraft pairs, 
some assumptions are made on the flight operations: 

• The aircraft are assumed to closely follow their preassigned SID path. This assumption should 
not be restrictive since aircraft are intended to follow their predefined SID path, not only to 
comply with traffic regulations, but also for example, to ensure possible noise abatement 
regulations in benefit of the population nearby the airport. 

• The aircraft are assumed not to perform rolling take-offs (i.e., start of the take-off acceleration 
just after entering the runway). This assumption should neither be restrictive as rolling take-off 
are not frequent during peak operations for which the use of the eOSD tool is intended. 

• It is assumed that aircraft will perform a strict climb during their flight just after take-off. 

2.4 Error rates 

Generally, it is always interesting and important to control the errors produced by any ML model 
developed. As it is envisaged that the eOSD tool will be used in an operational environment, the need 
for monitoring and managing errors in the ML model / eOSD tool is critical from a safety perspective. 
In this particular context, it is considered to have an error if the predicted clearance time to be applied 
is smaller than the ground truth clearance time to be applied (i.e., the minimum clearance time that 
would have been required to satisfy all applicable spacing constraints). However, designing a system 
with a zero-error rate would require adding over-conservative buffers in the clearance time calculations 
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and would make then the system inefficient, even if safe. For the design of the eOSD tool, it is thus 
suggested to determine an “acceptable” error rate that would correspond to a fraction of the under- 
spacing rate observed locally in current operations without the use of the tool. Very low error rates, of 
around a few percentages, are thus here considered as acceptable for the different separation / spacing 
constraints since in current operations very low error rates are observed. 

 

2.5 Baseline: OSD solution for clearance time calculation 

A baseline solution to calculate the clearance time to be applied per aircraft pair is defined and further 
referred to as OSD. For each of the ML trajectory and speed profile models (Rolling Time, Rolling 
Distance, Time to TAS and Altitude to Time) a corresponding baseline is defined as the mean by aircraft 
type and surface runway headwind band. 
Baseline buffer models are then also defined to account for any uncertainties caused from the previous 
models and from the wind variability on the initial departure path. The baseline buffer models are 
designed to target the specific acceptable error rates based on statistics by leader/follower aircraft type 
and follower surface runway headwind band. One baseline buffer model is defined per 
separation/spacing constraint. Specifically, for the SID baseline buffer model also the preassigned SID 
path of the flights is taken into account. 

 

3 Database description and processing 
The learning and testing of the various ML models described above require data. Those data shall 
describe the aircraft 3D trajectory, speed and climb profile, the wind and the flight information. 

 

3.1 Data sources 

One year (2019) of operational surveillance and meteorological data from Zurich airport has been used 
to calibrate and test the various models. Three data sources are used. 
The first one is Mode-S data that provide, with a refresh rate of 4 seconds, the aircraft trajectory 
(timestamp, aircraft 3-D position, ground and true air speed, heading and bank angle), the wind (speed 
and heading) and the flight information (aircraft type, callsign and destination airport). 
The second source is Advanced Surface Movement Guidance and Control System (A-SMGCS) data. 
For Zurich airport, this is the only source available with ground operation data since for most flights the 
Mode-S recordings start from when the aircraft is already in the air. The A-SMGCS features used in the 
ML pipeline are flight information (aircraft type, callsign, destination airport), aircraft trajectory 
(timestamp, 3-D position and ground speed). The A-SMGCS refresh rate is around 1 to 2 seconds. 
Finally, runway surface anemometer data are used containing recordings of the wind speed and direction 
recorded by anemometers positioned near the runways. The recording refresh rate is 3 seconds. 

 

3.2 Data processing 

From the data sources just described, some features are used directly, whilst other features need to be 
computed. For each flight, the take-off runway and the runway entry are detected from the A-SMGCS 
data. Also, the acceleration and the end of rotation points are computed from the A-SMGCS data. 
These two specific points allow the definition of the Rolling Time and the Rolling Distance. The 
Mode-S data is used to detect the followed SID route. Finally, the anemometer data is used to define 
for the runway of interest its surface head and cross wind. 
A total of around 40,000 tracks, from one year of recordings, are used after data processing and filtering, 
they then form a total of around 70,000 couples (any two flights departing with a maximum 10 minutes 
interval) of which around 13,000 will be used as test set to assess the quality of the models. 

 

4 Machine learning pipeline for the eOSD tool 

4.1 Aircraft behaviour ML models 

The four machine learning models defined to describe the trajectory (rolling time, rolling distance, 
altitude to time and time to TAS) are very similar in their structure. Their general model architecture 
applicable to all of them is here described. 

 

 

 

 



EASN-2022
Journal of Physics: Conference Series 2526 (2023) 012108

IOP Publishing
doi:10.1088/1742-6596/2526/1/012108

5

In general, the model used to predict the target of interest takes as input: the aircraft type, airline, wake 
turbulence category (WTC), distance between origin and destination airport, surface head and cross 
wind along the runway, runway entry distance (X0), hour, month and day of the week of the flight. 
The model used is composed of one Gradient Boosting Regressors (GBR) [3] for the rolling time and 
distance models and by GBR for the altitude to time and time to TAS models. This model allows ones 
to describe non-linear relationships between the features and the targets. The model can handle only 
numerical data so the categorical data, for example airline or aircraft type, are previously targeted 
encoded. Target encoding is a technique to encode strings to numerical values taking into consideration 
the targets of the model [4]. 

 

4.2 Ground-Truth and eOSD-predicted optimised clearance time computation 

Before being able to train the buffer models, the error/uncertainty of the eOSD tool calculations obtained 
based on the aircraft behaviour ML models explained above has to be quantified. For that purpose, the 
ground truth clearance time is computed for each pair of flights using the recorded rolling time, rolling 
distance, X0 and flight trajectory from the A-SMGCS and Mode-S source data. Note that the distance 
spacings to fulfil MRS and SID constraints are computed as a difference of travelled distance between 
the leader and the follower. This is valid under the hypothesis that the two aircraft follow the exact same 
trajectory. The formulas used to compute the clearance times are described in [1]. 
These values are then compared, for each pair of flights, to the predicted eOSD clearance time calculated 
using the ML models without buffers. 

 

4.3 ML Buffer models 

The ML buffer models are designed to respect the design error rates for each separation/spacing 
constraint, as defined in Section 2.4. Each constraint has one associated ML buffer model to learn the 
buffer needed to ensure the targeted error rates. The target variable to learn the required buffer is defined 
by the difference between the predictive eOSD clearance time value (without buffer) and its ground 
truth value. 
The model takes as inputs the following features, for both the leader and the follower aircraft: aircraft 
type, airline, WTC, distance to destination, runway head and cross wind, X0, hour, month, day of the 
week of the flight and SID. It uses a Gradient Boosting Regressor [GBR] [3] with a quantile loss set to 
enforce the targeted error rate. 

 

4.4 Coverage function 

The coverage functions are required to determine on which cases the predictive models can be used with 
sufficient confidence, or not. In order to assess the accuracy of the predictive models, an independent 
dataset from the one used to train the models is used. For all aircraft pairs in this dataset, all clearance 
times corresponding to all spacing constraints are computed using only predictive models (trajectory 
models and buffer models). 
The error rates regarding the target constraints are then computed on several subsets of this dataset. A 
subset is defined by the value of one or several features. If the target error rates are respected with 
enough confidence for all constraints on a subset, then this subset is considered as covered with regards 
to the feature/set of features of interest. A coverage function is then computed for each feature of interest. 
A set of six coverage functions are defined for each spacing constraint, except SID constraint: 

• Runway, 

• Triple: leader category / follower WTC/ runway, 

• Head wind range, 

• Leader aircraft type, 

• Follower aircraft type, 

• Leader airline, 

• Follower airline. 
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For the SID constraint, the triple coverage function is replaced by: leader category / follower WTC / 
SID. 
A couple is considered to be covered if and only if all coverage functions are true. For couples for 
which one or multiple coverage functions are false, the final clearance time is given by the OSD 
solution. 

 

4.5 Final optimised clearance time values 

To obtain the final eOSD clearance time value, the process described in Section 2.2 shall be followed. 
Each node corresponding to a separation/spacing constraint is substituted with the combination of the 
predicted clearance time for that constraint and the corresponding buffer. The different rules are then 
applied and a final clearance time is obtained. 

 

5 ML model evaluation 
The performance of each of the four machine learning models is assessed by comparing the results 
obtained by the four ML models to a respective baseline model. The baseline models are here defined 
as the average target per aircraft type and surface runway headwind band. 
Table 1 illustrates the explained variance scores obtained with the baseline and ML rolling time and 
rolling distance models. It can be seen that the explained variance increased with the ML model 
compared to the baseline model by around 8% for the Rolling Time and by around 11% for the Rolling 
Distance. 

 Rolling Time Rolling Distance 

Baseline 0.50 0.61 

Machine Learning 0.54 0.68 
Table 1: Rolling time and distance explained variance scores obtained with the baseline and the ML models on the testing 

set. The values can range from 0 to 1 with 1 being the best. 
 

Figure 1 and Figure 2 illustrate the explained variance scores obtained with the baseline and ML altitude 
to time and time to TAS models. In can be observed that it was possible, with the use of the ML model, 
to increase the explained variance compared to the baseline model by up to around 70% for the altitude 
to time and by up to around 135% for the time to TAS. 

 
Figure 1: Explained variance scores for the altitude to time obtained with the baseline and the ML models on the testing set. 

The values can range from 0 to 1 with 1 being the best. 
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Figure 2: Explained variance scores for the time to TAS obtained with the baseline and the ML models on the testing set. The 

values can range from 0 to 1 with 1 being the best. 
 

6 eOSD solution benefits compared to OSD solution 
The benefits related to the use of ML models to calculate the clearance time to be applied between 
departing aircraft pairs compared to traditional statistical approach was assessed. For that purpose, the 
final clearance time values, obtained using the eOSD ML pipeline described in Section 4 are compared 
to those obtained from the baseline approach (OSD), defined in Section 2.5. It should be noted that both 
eOSD and OSD clearance time calculations are calibrated to lead to same acceptable error rate allowing 
for a fair comparison. 
Around 42 % of the aircraft pairs in the test set are considered to be covered by the coverage functions, 
described in Section 4.4. For those covered aircraft pairs, an average time separation reduction of around 
13 % is obtained with eOSD compared to OSD with still very low error rates (below the error rates used 
for the design criteria). 
For non-covered aircraft pairs, the OSD clearance time outputs are used. When considering all pairs, 
5% overall average benefit compared to OSD is achieved with very low error rates. 
By increasing the size of the training dataset, an improvement in the model accuracy and an increase of 
the coverage can be expected allowing an overall benefit compared to OSD tending towards 13 %. 

 
 Gain of eOSD respect to OSD 

On covered couples (42 %) 13 % 

On covered and non-covered couples 5 % 
Table 2: Gains of the eOSD solution respect to OSD only on covered aircraft pairs and overall considering also the non- 

covered aircraft pairs. 

7 Conclusion 
The present paper described the enhanced Optimized Spacing Delivery (eOSD) solution, an ATC 
support tool which consists of an automated digital countdown timer. The eOSD allows for the 
application of complex separation scheme such as Pairwise Wake Separations for departures as well as 
ICAO and RECAT-EU wake separation schemes and also ensures the safe, consistent and efficient 
delivery of the required spacing between consecutive departure pairs on initial phase of climb. 
With eOSD, the clearance times required between consecutive aircraft pairs are calculated making use 
of Machine Learning (ML) techniques for the prediction of rolling time, rolling distance, airspeed profile 
and climb profile. ML models are also used to calculate the required buffers to be added to the clearance 
time calculations when combining the ML models in order to obtain safe, yet efficient, separation 
delivery. Finally, coverage functions are developed and trained in order to establish in which conditions 
the ML models can be considered as reliable and hence used operationally. For each departure pair 
considered as non-covered by these coverage functions, a conservative approach is followed. eOSD 
solution builds on the OSD solution previously developed by EUROCONTROL and for which the 
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clearance times required between departing aircraft pairs were calculated using traditional statistical 
methods (used here as baseline for assessment of eOSD). 
The ML models and their use for the eOSD tool have been trained and tested based on one year of 
surveillance and meteorological data from Zurich airport. The individual ML models for rolling 
time, rolling distance, airspeed profile and climb profile have all been shown to be significantly 
superior to the baseline ones (i.e., those used in OSD solution), allowing for hence more efficient / 
reduced spacings between departing aircraft. When combined and used for the eOSD clearance time 
calculations, the ML models have been shown to provide an average of 13% of time spacing 
reduction for the covered pairs compared to OSD. With the current dataset, the coverage that was 
achieved was 42% leading to a global average benefit of 5% for eOSD compared to OSD. By 
increasing the size of the dataset, an improvement in the model accuracy and an increase of the 
coverage can be expected allowing an overall eOSD benefit compared to OSD tending towards 13 %. 
The use of such eOSD tool therefore allows an increase in departure throughput during peak 
operations in those airports that are capacity constrained, hence reducing runway congestion, which 
also has direct impact on network delays and on the environment. 
Future work will aim to explore the performance of the eOSD tool in other airport environments. It 
would also be of interest to explore how the models and coverage could be improved through a 
multi- airport solution where airports, under specific agreements, could share data between each 
other. 
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