
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

GPU acceleration of the ATLAS calorimeter
clustering algorithm
To cite this article: Nuno Fernandes on behalf of the ATLAS Collaboration 2023 J. Phys.: Conf. Ser.
2438 012044

 

View the article online for updates and enhancements.

You may also like
Integration K-Means Clustering Method
and Elbow Method For Identification of
The Best Customer Profile Cluster
M A Syakur, B K Khotimah, E M S
Rochman et al.

-

Influence of an efficient Hierarchical
Clustering Algorithm in analyzing Cancer
affected DNA Dataset
E. Kiruba Nesamalar, J. Satheesh Kumar
and T. Amudha

-

K-Means Algorithm Performance Analysis
With Determining The Value Of Starting
Centroid With Random And KD-Tree
Method
Kamson Sirait, Tulus and Erna Budhiarti
Nababan

-

This content was downloaded from IP address 18.220.66.151 on 26/04/2024 at 15:41

https://doi.org/10.1088/1742-6596/2438/1/012044
https://iopscience.iop.org/article/10.1088/1757-899X/336/1/012017
https://iopscience.iop.org/article/10.1088/1757-899X/336/1/012017
https://iopscience.iop.org/article/10.1088/1757-899X/336/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1998/1/012030
https://iopscience.iop.org/article/10.1088/1742-6596/1998/1/012030
https://iopscience.iop.org/article/10.1088/1742-6596/1998/1/012030
https://iopscience.iop.org/article/10.1088/1742-6596/930/1/012016
https://iopscience.iop.org/article/10.1088/1742-6596/930/1/012016
https://iopscience.iop.org/article/10.1088/1742-6596/930/1/012016
https://iopscience.iop.org/article/10.1088/1742-6596/930/1/012016
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstBHsPCkEx0yAAj0wq7r5p6oSxfmLddd1jVrEsf2Ws4pl3GoFvtpLdVW88iwou6E23EA9r-RGvj-4zNTTmhvpXNlupEzSVdhcJ_TwhEKb5neXgCzpk-BseHee-2B9MTcbmVtr65YFpC4-aUSWq0Qb7Bh1UseLYwo7Zq6MRbCibmey_BgBdGNhRgAuc-Oa8PKNAARd-FXhqZjxMSZioRDINlcvXJOvUBYxDJDslLI_nPANC8ArYo9rP-ldk03nPXPhMkidlLzljj8lv9bIDwtOkbI3S35ASxr1WZStamEd1RSIUnR0xDljwOD9FeE5Ulu6g-9JzjevLg6KXQqDTfrn9XFa3Cog&sig=Cg0ArKJSzFW8rEXiOwFR&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012044

IOP Publishing
doi:10.1088/1742-6596/2438/1/012044

1

GPU acceleration of the ATLAS calorimeter

clustering algorithm

Nuno Fernandes1,2 on behalf of the ATLAS Collaboration
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Abstract. Given the upcoming High-Luminosity LHC Upgrade, the performance requirements
for the trigger systems associated with the LHC experiments will increase due to the larger volume
of data to be processed. One of the possibilities that the ATLAS Collaboration is evaluating for
upgrading the software-based portion of its trigger system is the use of Graphical Processing Units
as hardware accelerators. The present work focuses on the GPU acceleration of the Topological
Clustering algorithm, which is used to reconstruct calorimeter showers by grouping cells according
to their signal-to-noise ratio. A more GPU parallelizable version of the Topological Clustering,
called Topo-Automaton Clustering, was implemented within AthenaMT, the software framework
of the ATLAS trigger, and its results were compared to those of the standard CPU algorithm to
ensure physical validity is maintained. Time measurements suggest an average improvement of
the event processing time by a factor between 3.5 and 5.5 (depending on the kind of the event),
though less than 20% of that time corresponds to the algorithm itself, suggesting that the main
bottleneck lies in data transfers and conversions.

1. Introduction
The Large HadronCollider (LHC) is currently the largest particle accelerator in the world, and one of
the most useful instruments for Particle Physics due to both the high energies and high luminosities
that can be attained. To further increase its capabilities, it is undergoing the High-Luminosity
Upgrade (HL-LHC), which should be completed by Run 4 (2028), increasing the instantaneous
luminosity by a factor of 5−8 (up to L≃8×1034 cm−2s−1) and the average number of collisions
per bunch crossing by a factor of 8 (up to ⟨µ⟩≃200), with respect to the respective nominal values.

The ATLAS experiment [1] is one of the two general-purpose detectors at the LHC. This means
that its trigger system, which is responsible for determining which events are committed to storage
for later offline analysis, must take into account a variety of physical signals. Given the ensuing High-
Luminosity LHC Upgrade, several improvements must be made to this system for it to be able to
cope with the increased collision rate and the increased computational cost of processing each event.

The ATLAS trigger has two stages, with the first being based on custom electronics and the
second being executed in software running on commodity hardware, integrated in the AthenaMT
framework [2, 3], a multi-threaded version of Athena [4]. An interesting possibility for improving
the computing power available at this second stage is the use of hardware accelerators, which
can execute certain operations (hence, certain parts of event reconstruction) faster and/or more
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efficiently than the Central Processing Units (CPU) which are more commonly employed in com-
putational tasks [5]. One of the more widespread varieties of hardware accelerator in use today
is the Graphics Processing Unit (GPU), which offers large-scale parallelism in terms of the number
of threads available for processing, at the cost of requiring special attention to the memory access
patterns and branching behaviour of the operation to be executed by each thread.

The present work is focused on the porting to GPUs of Topological Clustering [6], and in par-
ticular of a more parallelizable variation of it called Topo-Automaton Clustering [7], the algorithm
which is used to reconstruct three dimensional calorimeter showers produced by the interactions
between the particles that come out of the collision and the material in the detector.

2. The Algorithms
2.1. Topological Clustering
In Topological Clustering [6], the calorimeter cells are grouped according to the signal-to-noise ratio
of the energy deposited during the event, taking into account the noise due to both the electronic
read-out systems and the pile-up.

Cells are classified as seed, growing, terminal or invalid cells according to three thresholds,
the seed threshold, Tseed, the growing threshold, Tgrow and the terminal threshold, Tterminal, with
Tseed>Tgrow≥Tterminal. The seed cells will be the origin of the clusters, which are the starting point
of the algorithm. The clusters are evaluated in order of descending signal-to-noise ratio of their
initial seed cell, by adding all the valid neighbouring cells that are not already part of another cluster
and bymerging the clusters that border each other through a seed or growing cell, which corresponds
to adding all the cells to the cluster originated by the cell with the highest signal-to-noise ratio.
This procedure is then applied to the growing cells that were added to the clusters at the previous
step, in an iterative process, until there are no more seed or growing cells to consider. At this point,
the algorithm has arrived at the final clusters, whose physical properties (energy, transverse energy,
pseudo-rapidity, azimuthal angle) may be calculated from the cells that were assigned to them.

It must be pointed out that, according to this algorithm, the terminal cells are added to the
first cluster that can reach them. Given the order of evaluation of the clusters, this means they will
belong to the cluster which can reach them in fewer iterations and, within those that reach them
at the same iteration, to the one originated by the seed cell with the highest signal-to-noise ratio.

2.2. Topo-Automaton Clustering
Adirect implementation of the Topological Clustering algorithm as-is on GPUs would likely result in
little to no performance gains. To ensure proper ordering of the operations, it requires maintaining
two lists of cells to be evaluated, one at the current and other at the next iteration, which does not
provide for a very GPU-friendlymemory access pattern. It is also highly non-trivial to parallelize the
cluster growing process in itself due to the assignment of terminal cells, which, as explained, explicitly
relies on the order in which the seed and growing cells are considered to achieve correct results.

An alternative way to implement this cluster growing procedure with greater possibility of
parallelization could be through theTopo-AutomatonClustering algorithm, which employs a cellular
automaton to propagate tags through the cells to uniquely identify them as belonging to a given
cluster. The tag of each cell at every step of the propagation only depends on its current tag and those
of its neighbours, such that all the cells can be evaluated in parallel. Furthermore, the aforementioned
lists of cells are no longer required, which allows for better memory access patterns on a GPU.

The most straightforward way of implementing the algorithm would be requiring that the
ordering of the tags that correspond to each cluster reflects the ordering of the signal-to-noise ratio
of the seed cell which originated them, with a special tag value, comparing lower than any cluster
tag, being reserved to mark the cells that are not part of any cluster. With this, tag propagation
consists in taking the maximum between the current tag of the cell and the tag which is being
propagated to it. This operation can be done in parallel for all valid neighbours, in particular by
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considering a list of all the pairs of cells eligible for tag propagation, which correspond to all the pairs
of neighbouring valid cells with at least one seed or growing cell. This tag propagation is repeated,
iteratively, until a stable state is reached, that is, until further iterations would result in no changes
to the cell tags. That state contains the final clusters, whose properties can be then calculated,
also on the GPU, from the cells that have the tag which uniquely corresponds to each cluster.

As mentioned, the assignment of the the terminal cells in the Topological Clustering depends
explicitly on the order of evaluation. However, given the architecture of a GPU and the parallelism
model it offers, the order in which the threads are executed is unspecified, which would lead to
non-deterministic results if the same criterion was kept. Explicitly calculating the distance between
the terminal cells and the clusters’ seed cells, in order to replicate the effects of that criterion, would
also be impractical, especially on a GPU, so an approximate solution was adopted instead: the
terminal cells are assigned to the neighbouring cluster that has the highest signal-to-noise ratio
of its initial seed cell (and, hence, the highest tag) among all clusters that border the terminal cell
in question. This allows for deterministic terminal cell assignment easily implemented by taking
the maximum between the terminal cell’s tag and all the neighbouring cells’ tags. In section 4,
the impact of this change on the physical significance of the results will be discussed.

This alternative criterion has a secondary advantage. As the assignment of the terminal cells
is only dependent on the final tag of the neighbouring cells, the iterative part of the algorithm can
be reduced to considering only propagation between growing and seed cells, with the assignment
of the terminal cells being done in a final step afterwards. This enables some performance gains by
avoiding the branching of the code that would otherwise be necessary to prevent tags from being
propagated from the terminal cells to their neighbours.

Though previous prototypes included an explicit sorting step to ensure the correct ordering
of the tags, as discussed in [8], the signal-to-noise ratio in itself can be leveraged to provide an
ordering with the desired properties while allowing the sorting to be skipped. In particular, the
implementation uses 64-bit tags that have in their most significant 32 bits the signal-to-noise
ratio of the corresponding seed cell and in the 32 least significant bits an index which corresponds
uniquely to the cluster, which facilitates the calculation of the final cluster properties.

A final word must be said regarding the merging of the clusters. While the rules laid out for
tag propagation ensure that, after a sufficient number of iterations, the largest tag is propagated
to all the cells of the merged clusters, the inclusion of an explicit merging step where all the cells
of the merged clusters change their tag has been measured to be more performant [8].

The data representation must be carefully considered to better leverage the architecture of a
GPU. In particular, the substitution of the usual arrays-of-structures, where each object is kept
as an entry in an array, for structures-of-arrays, where each variable of the object corresponds to
a separate array, enables a better utilization of the several levels of caching available within the
GPU. This is applicable, above all, to the description of the cluster geometry, namely in terms
of the coordinates of the cells, and to the final cluster properties. Besides these, on GPU memory,
one must keep the array of cell tags and the list of valid pairs of cells for tag propagation, as well
as an auxiliary table for the explicit merge step, which holds the tag that the cells of every cluster
must have after the merges took place.

3. Structure of the Implementation
There have been some previous prototype demonstrations [7, 9] of the possibility of employing
GPU acceleration to the Topo-Automaton Clustering algorithm. They employed a client-server
architecture that isolated the implementation of the algorithm from interfacing with theGPU.While
a speed-up by a factor between 1.3 and 2 was achieved, about 17% of the time was spent in inter-
process communication due to the architecture. As such, for the current implementation, a simple,
linear structure was adopted, with the GPU being interfaced directly from within the algorithm.

Tominimize data conversions and transfers to and from the GPU, an additional approximation is
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made in regards to the CPU implementation: the noise associated with the energy measurements is
assumed to remain constant throughout the run. The evaluation of the effects of this approximation
on the resulting clusters will bemade in section 4. The description of the geometry of the calorimeter,
including the neighbourhood relations between the cells and their positions, also needs to be setup
on GPU memory before event processing can commence, typically at the start of the run.

The processing of each event can be broken down into three stages:

(i) Preparing the Data: read the energy measurements at each cell, write them in the GPU-
friendly struct-of-array representation and send it to the GPU.

(ii) Running the Algorithm: on the GPU,

(a) Calculate the signal-to-noise ratio of each cell and initialize the tags to the appropriate
value.

(b) Create the list of eligible cell pairs for tag propagation.
(c) Grow the clusters by propagating the tags following the algorithm outlined in 2.2.
(d) Calculate the final cluster properties by accumulating the cell energies and positions

weighted by the absolute. energy

(iii) Packaging the Results: receive the array of cell tags and the final cluster properties from
the GPU and construct the appropriate AthenaMT data structures to represent the final
clusters in a way that is compatible with the rest of the software.

4. Preliminary Results
The results that follow were obtained on a machine running CentOS 7.9.2009 equipped with an
AMD EPYC 7552 CPU and a Tesla V100S GPU, using CUDA 10.2, GCC 8.3 and version 22.0.24
of AthenaMT. Two different Monte Carlo simulated samples were used: tt̄ events, with µ=80
collisions per bunch crossing, corresponding to events where a top quark-antiquark pair has been
formed and there is at least one lepton in the final state, which tend to be quite dense in terms
of the number and size of the clusters, and di-jet events, with µ=20 collisions per bunch crossing,
corresponding to events where a quark-antiquark or a gluon-antigluon pair has originated two
jets of particles. In the plots, tt̄ events will be represented as solid or dotted red lines, while di-jet
events will be represented by dashed and dash-dotted blue lines. Dotted and dash-dotted lines
are used to present results for the standard CPU implementation of Topological Clustering, with
the solid and dashed lines corresponding to the Topo-Automaton Clustering.

The most significant results from the present work are the measurements for the speed-up factor
gained from GPU acceleration, measured as the ratio between the total time necessary to process a
single event in the standard CPU implementation of Topological Clustering (which runs on a single
CPU thread) and the total time necessary to process that same event in the GPU-accelerated imple-
mentation of Topo-Automaton Clustering, as shown in Figure 1a. The average speed-up factor is 3.5
for di-jet events and 5.5 for tt̄ events. However, less than 20% of the time is actually spent on the algo-
rithm, with the remaining 80% being taken by the data transfers and especially the data conversions.

Figure 1b shows the differences between the total number of clusters per event that were identified
by each implementation. To perform an accurate comparison between the implementations, a
one-to-one correspondence between the clusters identified by each of them must be found, a process
which will be designated matching henceforth. Matching is done through a variant of the Gale-
Shapley algorithm [11], ensuring that the clusters that have the most cells in common between both
implementations are paired with each other. Figure 2a presents the number of clusters that cannot
be matched according to this procedure. For most of the events, all clusters are matched, with a few
events having between 1 and 4 unmatched clusters, a small difference when compared to the average
number of clusters per event (about 1200 for tt̄ events and 550 for di-jet events). These differences
were found to be a result of the constant noise approximation used in the GPU implementation.
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Figure 1: Distributions of the speed-up factor obtained from GPU acceleration (left) and of the
differences between the number of clusters identified by the GPU and the CPU implementation
(right), for tt̄ (solid red line) and di-jet events (dashed blue line). Plots available at [10].
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Figure 2: Left: number of clusters that are identified by the GPU (solid and dotted lines) or CPU
(dashed and dash-dotted lines) implementations in each event and that have not been successfully
matched to a cluster in the other implementation, for tt̄ (red lines) and di-jet events (blue lines).
Right: differences between the pseudo-rapidity of matched clusters as reconstructed by the GPU
and as reconstructed by the CPU implementation, for tt̄ (solid red line) and di-jet events (dashed
blue line). Plots available at [10].

Analysing the differences between the clusters that do match between both implementations,
the first conclusion is that more than 99.9% of the clusters have exactly the same growing and
seed cells, but some differences remain in the terminal cells due to the different criteria used for
their assignment. Figure 2b shows the differences in the reconstructed pseudo-rapidity, η, of the
final clusters, according to each implementation. Performing the same comparison for other cluster
properties, such as the energy or the transverse energy, would lead to the same conclusion: despite
the slight differences in the terminal cell assignment, the final cluster properties are very similar
between both implementations. In particular, defining the distance between the matched clusters

in the η-ϕ plane as ∆R=
√
(∆η)2+(∆ϕ)2, more than 99.9% of the clusters are within ∆R<0.07.
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5. Conclusions
The present work aimed to explore the possibility of employing GPU acceleration within the
ATLAS trigger, anticipating the stricter performance requirements posed by the High-Luminosity
LHC Upgrade.

The feasibility of employing GPU acceleration for the Topological Clustering algorithm used
within the calorimeter reconstruction has been succesfully demonstrated, with a promising speed-up
having been measured in comparison to the standard CPU implementation, on average by a factor
of ∼3.5 for di-jet events and ∼5.5 for tt̄ events.

The validation studies of the implementation show that, despite there being some discrepan-
cies that arise mainly from the differences in the terminal cell assignment between the standard
CPU implementation and the GPU-accelerated version, the cluster properties are reconstructed
sufficiently similarly in both implementations for the purposes of the trigger, and could be further
improved by future algorithmic changes.

Another important conclusion is the fact that, in the present implementation, only 20% of the
total event processing time is spent on the execution of the algorithm in itself. This means that
future development efforts focused on reducing the overheads associated with data transfers and
conversions would probably have the most significant impact in the efficiency of the implementation.
This can be achieved, for example, by including other steps of the calorimeter reconstruction
also on GPUs, allowing the reuse of data already stored in GPU memory, or by considering some
possible changes to the data structures currently used within AthenaMT so that they would be
more GPU-friendly, thereby reducing the overheads associated with data conversion.
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