Paper The following article is Open access

Autonomous Optical Tweezers: from automatic trapping to single particle analysis

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation Felipe Coutinho et al 2022 J. Phys.: Conf. Ser. 2407 012025 DOI 10.1088/1742-6596/2407/1/012025

1742-6596/2407/1/012025

Abstract

Optical trapping is a versatile and non-invasive technique for single particle manipulation. As such, it can be widely applied in the domains of particle identification and classification and thus used as a tool for monitoring physical and chemical processes. This creates an opportunity for integrating the method seamlessly into optofluidic chips, provided it can be automatized. Yet even though OT is well established in multiple scientific domains, a full stack approach to its integration into other technological devices is still lacking. This calls for solutions in tasks such as automatic trapping and signal analysis.

In this manuscript, we describe the implementation of an algorithm seeking autonomous particle location and trapping. The methodology is based upon image-processing, allowing for particle location using real time image segmentation. A local thresholding algorithm is applied, followed by morphological techniques for closing shapes and excluding non-bounded regions - after which only the particles remain on the image. Once the centroid is identified, the stage is translated accordingly by piezo-electric actuators, followed by the laser activation. In this way, trapping is achieved, and one may proceed to analyze the forward scattered optical signal, after which a new particle inside the actuators range may be automatically trapped.

This development, when compared with existent solutions involving holographic optical tweezers, allows for similar capabilities without using a spatial light modulator, thus dramatically reducing the setup costs of autonomous OT solutions. Therefore, when combined with particle classification techniques, this method is well suited for integration into possible optofluidic chips for autonomous sensing and monitoring of biochemical samples.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2407/1/012025