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Abstract. The refinement of existing CNN-based Super-resolution Reconstruction (SR) 

networks mainly focuses on deeper network architecture, which hinders the transmission of 

information in the networks. A deeper network is unable to make full use of intermediate 

correlation features and makes the training of the network difficult. To solve these problems, we 

propose a multi-scale channel attention residual network (MCAR). Specifically, we propose a 

multi-scale channel attention fusion module (MCAF) to learn local and global channels feature 

and capture the long-range dependencies. Furthermore, the multi-scale block is adopted to get 

the different scale feature representations. The experimental results on four benchmark datasets 

demonstrate that our models can effectively improve the visual effect of images, and outperform 

most of the advanced SISR methods in PSNR and SSIM.  

1. Introduction 

Low-resolution (LR) images are blurred and detailed information is lost, so the SR technology is to 

complete and perfect this part of the information to obtain high-resolution (HR) images. The generated 

images can also provide services for downstream computer vision-related tasks[1][2], which can 

enhance the task effect and improve recognition accuracy. 

The traditional SR methods have achieved great success because of their interpretability and ease to 

accomplish. However, these methods need more and more artificially defined prior knowledge with the 

zoom scale increasing and no longer meeting the needs. It's difficult to achieve the purpose of high-

quality reconstruction. 

The CNNs have power feature representation ability to learn the mapping relationship. The earliest 

CNN-based SISR is the SRCNN[3] proposed by Dong et al.in 2014, obtaining a higher PSNR/SSIM 

index than the traditional method. In VDSR[4] which has 20 layers, Kim et al. used residual blocks to 

connect networks to increase the depth. In ResNet[5] , Kaiming He had proved that increasing the depth 

of the network can fully release the potential of the network and enhance its learning ability. 

However, Most existing deeper and deeper CNN-based SR methods have the following problems:(1) 

simply stacking the residual block to increase the depth will increase the training difficulty and hardly 
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obtain the better improvements; (2) ignoring the relevant information between the middle layers; (3) 

gradually weakening the transmission of information flow.  

To address these problems, we proposed a MCAR model to exploit the different scale feature from 

the input image and obtain a better feature representation ability. The MCAF module is proposed for the 

MCAR model. Firstly, MCAF extracts different scale features by different convolution kernels. 

Secondly, at different scales, we utilize local and global attention branches respectively to learn channel-

wise correlational features. Lastly, we fuse the two branches which have different scale features to 

reconstruct high-resolution images via a sub-pixel convolution upscaling module.  

2. Related work 

2.1. CNNs for SR  

The main improvement direction of the CNN-based algorithm model is the depth of the convolutional 

layer. In theory, the deeper network can capture more higher-lever features and provide better expression 

capabilities. In 2015, Kim et al. [4] used residual blocks to increase the network depth, which solved the 

problem of slow convergence speed, and improved network performance. In 2018, Zhang Y et al boiled 

a deep network using residual mapping and achieved good results in high-frequency information 

processing of images.  

2.2. Attention mechanism  

Processing the entire image needs too many resources, and increases inference time. The human visual 

system often does not pay attention to every detail when quickly observing the outside world, but 

selectively to the areas that are interested in and considered important and ignores some unimportant 

areas. Based on this idea, J. Hu et al. [6] proposed a SENet model with different degrees of attention to 

different channel features by learning different weights using the obtained weights value to enhance 

useful features and suppress useless features. 

2.3. Residual network 

The essence of the SISR is to generate the texture details from the low-resolution image information. 

So, researchers believe that the learning ability of the networks should be focused on the residual part 

between the LR and HR images. Then the network can avoid the complete transformation. The global 

residual reduces the amount of model calculation. The local residual is ResNet[5] proposed by K. He et 

al., which is mainly used to solve the model degradation caused by the deep network. The local residual 

achieves by adding skip connections inside the network. 

3. Proposed method 

3.1. Network architecture 

We will describe and formulate the network we proposed. As shown in Figure 1, the MCAR has three 

parts, including LR image feature extraction module, MCAF for nonlinear feature mapping learning, 

and the reconstruction part.  

 
Figure 1. The network architecture of MCAR. 
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  The input is  𝐼𝐿𝑅 and output is  𝐼𝑆𝑅, our network uses the 9 × 9 convolutional kernel to extract 

shallow features 𝐹0: 

𝐹0 = 𝐻𝐸𝐹(𝐼𝐿𝑅)                                                                                (1) 

Where 𝐻𝐸𝐹(·)  denotes the feature extraction function, and 𝐹0 is the extracted shallow feature. Then 𝐹0 

is used for the MCAF module to learn deep features: 

𝐹𝐷𝐹 = 𝐻𝑀𝐶𝐴𝐹(𝐹0)                                                                            (2) 

where 𝐻𝑀𝐶𝐴𝐹(·) denotes the functional function of our proposed MCAF structure, and 𝐹𝐷𝐹 is the deep 

feature. MCAF can learn deep features well through global channel attention and local channel attention. 

Then learn the 𝐹𝐷𝐹 channel attention through the globe channel attention module (GCA):  

𝐹𝐷𝐹̃ = 𝐻𝑠𝑐𝑎𝑙𝑒(𝐹𝐷𝐹)                                                                       (3) 

Where 𝐻𝑠𝑐𝑎𝑙𝑒(·) denotes the globe channel attention module (GCA), and 𝐹𝐷𝐹̃ is the learned deep feature. 

Then input 𝐹𝐷𝐹̃ to the upsampling module for size enlargement: 

𝐹↑ = 𝐻↑(𝐹𝐷𝐹̃)                                                                     (4) 

Where 𝐻↑(·)  is the up-sampling function, and 𝐹↑  is larger size feature. Finally, input 𝐹↑  into the 

reconstruction module to complete the final image reconstruction: 

𝐼𝑆𝑅 = 𝐻𝑟𝑒𝑐(𝐹↑) = 𝐻𝑀𝐶𝐴𝑅(𝐼𝐿𝑅)                                                           (5) 

where 𝐻𝑟𝑒𝑐(·) denotes the reconstruction module, 𝐻𝑀𝐴𝑅𝐹𝑁(·) denotes our proposed MCAR network, 

and 𝐼𝑆𝑅 is the final generated image. 

MSE can improve PSNR and SSIM very well, but it will cause the generated image to be smooth 

and blurred visual effects. Experiments have proved that the L1 loss function is better than that of MSE, 

and the reconstruction effect is more realistic. For simplicity, we choose L1 loss to optimize the proposed 

model and then use MSE for the loss fine-tuning. 

𝐿𝑀𝑆𝐸(Θ) =
1

𝑛
∑ ‖𝐻𝑀𝐶𝐴𝑅(𝐼𝐿𝑅

𝑖 ) − 𝐼𝐻𝑅
𝑖 ‖

2𝑛
𝑖=1                                             (6) 

𝐿𝐿1(Θ) =
1

𝑛
∑ ‖𝐻𝑀𝐶𝐴𝑅(𝐼𝐿𝑅

𝑖 ) − 𝐼𝐻𝑅
𝑖 ‖

1
𝑛
𝑖=1                                             (7) 

3.2. MCAF module 

The convolutional neural network extracts information features by fusing information[7] that satisfies a 

certain spatial and channel distribution in the local receptive field. We utilize convolutional learning to 

focus on the relationships between different channels. As shown in Figure 2, the model can select the 

channel features that are effective and contribute more to the reconstruction and suppress the other 

channel features.  

  
Figure 2. Multi-scale channel attention fusion module. 

 

3.2.1. Global channel attention branch. We choose a 5×5 convolution to extract image information. As 

shown at the top of Figure 3, this branch first compresses the features of the entire spatial dimension 

into (C,1,1) through the global average pooling operation and then uses two one-dimensional 
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convolutions to complete the learning of the weights of each channel. Last, multiply the weight value 

with each original feature channel.  

 

 
Figure 3. Global and local channel attention feature learning module. 

 

3.2.2. Local channel attention branch. The model obtains a larger receptive field on a shallower network 

by the globally operating and then captures long-range dependencies in information. But for SISR, more 

information is more beneficial to image reconstruction. Some information that is not important from a 

global perspective can also be important on the reconstruction. Therefore, to compensate for the problem 

brought by global channel attention, we used the local channel attention[7] to enhance the effect of local 

channel features on image reconstruction. Because only a small number of parameters is added, no 

dimensionality reduction operation is required, which avoids the problem of information loss during the 

dimensionality reduction process. 

As shown at the bottom of Figure 3, the GAP is first performed to compress the features of the 

entire spatial dimension into 1×1×C size, and then one-dimensional convolution which the kernel is 3 

is used to complete the local cross-channel interaction, and extract the local inter-channel interaction 

dependencies. Finally, we obtain the weights between the local channels by the sigmoid function. 

3.3. Multi-scale model 

Multi-scale features can contain richer image features. We adopt a parallel structure and use convolution 

blocks with kernel sizes of 3×3 and 5×5 to extract features respectively in the same layer. The larger the 

convolution kernel can extract more features. Therefore, we use a 5×5 convolution kernel in the global 

channel attention branch to extract information and a 3×3 convolution kernel in the local channel 

attention branch. 

3.4. Feature fusion block and reconstruction module 

After obtaining the global and local channel attention features, we perform a concat operation on the 

two pieces of information, and finally, use 1×1 convolution to fuse the two features. In addition to the 

1×1 convolution, there are also methods such as pixel value-weighted average, pixel value average[8], 

etc. It is proved by comparative experiments that 1×1 convolution works best. 

    The reconstruction module uses the feature learned from the previous layers to reconstruct different 

scale images. Compared with the deconvolution layer and nearest neighbour, sub-pixel convolution[9] 

has superior performance and a better reconstruction effect. So, we choose sub-pixel convolution as our 

reconstruction mothed. 

4. Experiments 
In this section, we present the test results of our proposed model on four benchmark datasets. 
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4.1. Settings 

Datasets. We use the DIV2K dataset as training set. The details of the image in DIV2K dataset are clear 

and thus very suitable for use in super-resolution training. Meanwhile, we use four benchmark datasets 

as domain Validation set: Set5, Set14, BSD100, and Urban100, which widely used for model 

performance evaluation in SR. 

Evaluation metrics. We used the PSNR and SSIM as the evaluation metrics. PSNR is generally defined 

by Mean Square Error (MSE). The MSE is defined as in equation (8): 

𝑀𝑆𝐸 =  
1

𝑊𝐻
∑ ∑ [𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)]2𝐻−1

𝑗=0
𝑊−1
𝑖=0                                              (8) 

Where W and H is the wide and high of the image, the 𝑋 is the generated image and 𝑌 is the original 

image. So PSNR is based on the error between corresponding pixels. 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑔 (
𝑋𝑀𝐴𝑋

2

𝑀𝑆𝐸
)                                                            (9) 

SSIM is defined by bright-ness 𝑙(𝑥, 𝑦), contrast 𝑐(𝑥, 𝑦), and structure 𝑠(𝑥, 𝑦): 

             

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝑐1

𝜇𝑥
2+𝜇𝑦

2+𝑐1
   

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝑦+𝑐2

𝜎𝑥
2+𝜎𝑦

2+𝑐2
                                                              (10) 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝑐3

𝜎𝑥𝜎𝑦 + 𝑐3
 

Here, 𝑥 and y is the generated and the original image successively, 𝑐 is the constant, 𝜇 is the mean and 

the 𝜎 is the variance, 𝜎𝑥𝑦 is the Covariance. We set 𝛼 = 𝛽 = 𝛾 =1, 𝑐3=𝑐2/2, and get the simplified SSIM: 

SSIM(𝑥, 𝑦) =
(2μ𝑥μ𝑦+𝑐1){(σ}𝑥𝑦+𝑐2)

(μ𝑥
2+μ𝑦

2 +𝑐1)(σ𝑥
2+σ𝑦

2 +𝑐2)
                                                      (11) 

Implementation details. During the training process, we expand the DIV2K dataset by randomly 

cropping, rotating and flipping the images horizontally and vertically to increase training data samples. 
One sub-image is randomly cropped from the original image, and then down-sampled to 48×48, 24×24 

and 16×16 according to different scale alignments. 64 images are selected as a batch for each training. 
Feature extraction is performed on LR images using a 9×9 convolution kernel, followed by multi-scale 

channel features learning with 16 MCAF modules. The convolution of the global branch is 5 and the 

local branch is 3. The model is trained with the ADAM optimizer with 𝛽1=0.9, 𝛽2=0.99, 𝜀=10−8. The 

learning rate is initialized to 10−4 and reduced to half when training to epoch=400. We implement on 

NVIDIA GeForce RTX 2080Ti GPU using the Pytorch framework. 

4.2. Effects of local and global channel attention branch  

To demonstrate the effect of the local branch and global branch in the MCAF module, we successively 

removed. Else, to verify the impact of large-scale feature extraction on global, we adopted convolution 

kernel sizes of 3 and 5. We set the number of MCAFs to 8 and trained to 300 epochs. Experiments show 

that when only the local channel attention branch is used, the PSNR index of Set5(2×) is 37.26 dB, 

which is relatively the lowest. Using only global channel attention, when the convolution kernel is 3 and 

5 respectively, it reaches 37.35 dB and 37.71dB, which are relatively increased, and the effect of the 

convolution kernel is 5 is better. It can be seen that large-scale convolution is efficient for global channel 

attention. Finally, the experiment of combining local and global is carried out, and the indicators are the 

best, 37.78 dB. These comparisons illustrate the effectiveness of local and global channel attention in 

our proposed MCAF for image super-score reconstruction. 
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Table 1. Investigations of MCAF module on Set5(2×). 

MCAF 

Local branch (3×3) ✓   ✓ ✓ 

Global branch (3×3)  ✓  ✓  

Global branch (5×5)   ✓  ✓ 

PSNR on Set5（2×） 37.26 37.35 37.71 37.75 37.78 

 

4.3. Benchmark results  

In table 2, we provide the results of quantitative evaluation of our model on benchmark datasets in the 

super-resolution domain. Our model is compared with the SOAT model, including SRCNN, VDSR, 

LapSRN, SRResNet and SRMDNF, etc. For the existing models, we use the authors published results. 

For comparison, we transform the generated image to YCbCr space and then compute PSNR and SSIM 

metrics. Although the PSNR on the BSD100 dataset in the ×4 case is slightly lower than SRMDNF by 

0.06dB, the other datasets achieve the best results. The SSIM of our method on the four benchmark 

datasets mostly exceeds other SR models. 

Table 2. Average PSNR/SSIMs of MCAR for Scale ×2 and ×4. 

Dataset scale bicubic SRCNN VDSR LapSRN SRResNet SRMDNF Ours 

Set5 

×2 33.66/0.929 36.66/0.954 37.53/0.958 37.52/0.959 - 37.79/0 .960 37.79/0.964 

×4 28.42/0.810 30.48/0.863 31.35/0.873 31.54/0.885 32.05/0.891 31.96/0.893 32.21/0.904 

Set14 

×2 30.24/0.869 32.45/0.907 33.05/0.911 33.08/0.913 - 33.32/0 .916 33.46/0.924 

×4 26.00/0.703 27.50/0.751 28.02/0.763 28.19/0.772 28.53/0.780 28.35/0.777 28.61/0.798 

BSD100 

×2 29.56/ 0.843 31.36/0.888 31.90/0.896 31.80/0.895 - 32.05/0 .899 31.99/0.907 

×4 25.96/0.668 26.90/0.710 27.29/0.713 27.32/0.728 27.57/0.735 27.49/0.734 27.63/0.754 

Urban100 

×2 26.88/0.840 29.50/0.895 30.77/0.914 30.41/0.910 - 31.33/ 0.920 31.59/0.928 

×4 23.14/0.658 24.52/0.722 25.18/0.754 25.21/0.756 26.07/0.784 25.68/0.773 26.15/0.800 

 

4.4. visualization results  

We also present partial visualization results in the case of scale 4 in Figure 5. Through the comparison, 

our model can reconstruct more image detail information, and the contours are more obvious, which 

shows that our model is effective the effectiveness. 
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Urban100 img_009.png 
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SRMDNF/23.26 

 
Ours/23.89 

Figure 4. Visual comparison for 4× SR with our model on Set5 and Urban100 datasets. 

5. Conclusions 

We propose MCAR networks for high-precision image SR. Specifically, based on the basic residual 

structure, we utilize the global and local channel attention structures to improve the network learning 

efficiency. We utilize convolution of different sizes to make full use of the original image information. 

The channel attention learning is carried out Based inside the MCAF module, and the residual 

connection is used to allow low-frequency information direct skipping outside the MCAF module, 

making the network more focused on the learning of high-frequency information. Finally, the fusion of 

different feature maps is achieved with few parameters through 1×1 convolution. The future work is to 

focus on optimizing the network structure and improving the reconstruction effect of the model on 

texture details. In addition, the reconstruction speed and light-weight of the model can also be studied. 
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