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Abstract. Various parameters’ identification problems of one-dimensional nonlinear heat 

equation are considered. Their numerical study was carried out on the basis of balanced 

identification technology, which provides a compromise between the simplicity of the model 

(the curvature of the functions) and the proximity to experimental data. The problem of 

identifying functions whose arguments are model variables is considered. When approximating 

such a function, we had to use a polynomial function – the use of polylines (polygonal lines) in 

this case (superposition of functions) leads to nonsmooth mathematical programming problems 

(with discontinuous derivatives) with the solution not supported by standard solvers. An 

investigation of the use of special smooth approximations of polygonal curves (smooth-

polylines) is presented. 

1.  Introduction 

The experiment preparation and processing of the results involve an extensive use of mathematical 

models of the objects under study. To save costs they must be carefully planned: one should determine 

what, when, where and with what accuracy is to be measured to estimate the sought parameters with 

given accuracy. These questions can be answered by "rehearsing" the experiment and its processing on 

a mathematical model that simulates the behaviour of the object. 

Usually an experiment’s purpose is to evaluate some of the object’s parameters. In case of an 

indirect experiment some parameters are measured, while others are to be evaluated. The relationship 

between the parameters can be described by complex mathematical models. The formalization of this 

approach leads to identification problems that are inverse by nature. Those problems often turn out to 

be ill-posed and specific approaches using regularization methods are required for the solution [1]. In 

the balanced identification (SvF) method [2] the choice of regularization weights is making by 

minimizing the cross-validation error. It enables to find a balanced solution giving the optimal (in the 

sense of minimizing the cross-validation error) compromise between the proximity of the model to the 

data and the simplicity of the model [3], formalized in criterion by regularizing additive. 

SvF-technology has been successfully used by solving inverse problems in various scientific fields 

(mechanics, plasma physics, biology, plant physiology, epidemiology, meteorology, atmospheric 

pollution transfer, etc., a more detailed enumeration can be found in [2]). 

Another problem is the smoothness of the criterion. The use of NLP-solvers, as a rule, leads to the 

requirement of continuous differentiability of the solution selection criterion, which in turn entails 

continuous differentiability of functions, including those that depend on other model variables.  
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Polylines are widely used in mathematical modeling. They, unlike polynomials or Fourier series, 

have the property of locality - the value of an individual parameter (node) affects the function being 

approximated only up to neighboring nodes. However, a significant disadvantage of polylines is the 

discontinuities of derivatives at the grid nodes. 

The study of methods for smoothing polylines and the possibility of their use in solving inverse 

problems of processing experiments is the purpose of this work. The efficiency of the developed 

approximation methods is demonstrated by solving inverse problems of thermal conductivity. 

The main task is to find the dependence of the thermal conductivity coefficient on temperature 

based on an array of experimental data. Additionally, knowledge about the object will be involved: the 

equation of thermal conductivity. 

2.  Smooth-polylines in SvF-method 

One of the SvF-method issues arises if the model contains composition of unknown functions. The 

typical case is differential equations. Let’s take autonomous differential equation of the 1st order : 

     ( ) ( )x t F x t       (1) 

Assume that we have dataset  
0

,
I

i i i
t x


, (points of solution of (1), may be, with errors) and want to 

identify both functions ( ), ( )x t F x  by SvF-method with respect to the following “domain” constraints 

     ( ) : [0, ] , ,   ( ) : , ,LO UP LO UP LO UPx T X X F X X F F     

In the above simple case SvF-method iteratively solves some finite dimensional analogue, actually 

– mathematical programming problem (MPP), of the following variational problem (α is a 

regularization coefficient to be tuned by SvF-method further) 

 
     
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There are different ways to get that MPP, for sake of brevity we consider one of that. The first step 

of discretization is to represent function ( )x t  as a set of unknown values ( ),  0 :k k Tx x t k N   on a 
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replace continues function x(t) with piecewise linear function (pw-function)   0
, , TN

k k k
x t t x


 passing 

through points   
0

,
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
. As to discretization of F(x) we consider two approaches. The first is to 

approximate function ( )F x  by polynomial with unknown coefficients, i.e. 
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variational problem (2) may be replaced with MPP: 
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 (3) 

Polylines or (smoothed) piecewise approach is based on another approximation of ( )F x  - by 

piecewise continuous function defined on the interval  ,LO UPX X  by a finite set 

     
0

 , , ,
XN

j j LO UP LO UPj
F X X F F


  of unknown values ( )j jF F   on a fixed mesh over x variable. 
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Let   
1

1 1 ,  1:j j j j j XA F F j N 


     , be notation for the slopes of pw-function on intervals of 

its domain. Now pw-approximation of F(x) may be defined as follows (hereinafter  [ ] max ,0z z ) 

       0 1 0 1 1

2

( )
xN

j j j

j

F x F A x A A x   


           (4) 

The disadvantageous of the expression (4) is that the function ( )F x  is not differentiable and 

appropriate MPP, “close” to (2), could not be solved by available NLP-solvers (e.g. IPOPT, 

https://coin-or.github.io/Ipopt). The issue of smoothing functions like [ ]z   has a long history [4, 5]. 

The most popular are the following three approximations, all dependent on small parameter : 
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In the current implementation of SvF-technology we used the 1
st
, so called CHKS (Chen-Harker-

Kanzow-Smale) function, because (in some sense) it gives non-linear mathematical programming 

problem with (only) 2
nd

 order polynomial in equation constraints. The 2
nd

 option is quite similar and 

even more accurate because equal to 0 when z=0. After that expression (4) is replaced with the follow 
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In the case of uniform mesh by x variable,   1

0 1 0 ,  0 : ,j X Xx X j x j N x X X N        , 

expression (5) may be reduced to the following 
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Now the optimization problem (2) (corresponding to the “demo” inverse problem for autonomous 

1
st
 order ODE) will be the following (for some regularization coefficient α and the fixed parameter ): 

   
      

    1 0

2

2
1 1

31 ,
0: 1: 1

1 1

, 2 , ,
, ,   min,

 ,  , 0 : ,    ,  , 0 : ,

, ,  ,  
2

T

NN XT
k jk j

X

j j jN

i i k k k x F
i I j N

UP LO UP LO
k LO T j LO X

T X

k k k k
LO k UP

x x t t x
x

T T X X
t T k t t k N X j x x j N

N N

x x x x
X x X k

t

     






 

 


  

 

   
  



 
           

  
    

  

 

1: ,  ,  0 : .T LO j UP XN F F F j N   

 

3.  One-dimensional thermal conductivity problem with initially and boundary conditions 

Let's denote “M=0” a set of mathematical statements defining the model of thermal conductivity: 
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where x and t are the spatial and temporal coordinates, T(x,t) is the temperature (°C), K(T) is the 

thermal conductivity coefficient (temperature-dependent), φ(t) is the initial condition, l(t) and r(t) are 

the left and right boundary conditions. 

When conducting numerical experiments, an exact solution is used to generate datasets (of 

observations) and to calculate the errors of the solution:  

        
        

             
         

   

 
 

The functions of the exact solution are shown in figure 1. 

 

  

Figure 1. Functions of the exact solution: (a) contour lines of Ts(x,t); (b) thermal 

conductivity K(T). 

4.  Data set 

We formalize the concept of a data set (observations or measurements set): 

                              , 

where Ti is the temperature measurement at point xi at time ti.  

For vectors of dimension ǀDǀ, we introduce the notation  

            
 

   
   

 

   

 

   

 

Below, for numerical experiments, a data (measurements) set is used, generated on a regular 11x11 

grid (11 points in space 0, 0.2, 0.4 ..., 2 and 11 points in time 0, 0.5, 1, ... 5) 

                                                                     

where Ts(xi,ti) are the values of the exact solution, εi is the random error with variance 

       . 

To generate εi, a normal distribution random number generator (gauss (0.2)) with zero mean and 

variance equal to 2 (°C) was used. As a result, the distribution εi was obtained with average md = -0.10 

(°C) and variance σd = 2.06 (°C). These characteristics of errors are not used in calculations but are 

taken into account when considering the results. The location of the measurement points of the D set 

on the x, t plane can be seen in figures 2, 3, 4. The data set files can be found in file SvF-2021-11.zip 

in the Git repository https://github.com/distcomp/SvF. 

5.  Method of balanced identification (SvF) 

The balanced identification method is described in details in [2]. 
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We formalize the concepts necessary for its use in this problem: 

 a measure of the proximity of the model trajectory to measurements (data set D) or the 

approximation error:          
 

   
               

 
                   

   

where     – the number of elements of the set D; 

 a measure of curvature (complexity) of functions of one variable f(x)  

                             
 

 
, 

where [a, b] is the domain of the function; 

 a objective function - a combination of the measures introduced above  

                                                                        

where К(T), φ(x), l(t) и r(t) – functions defining solution (6).  

Curvature terms (last four) are the regularizing additions that makes the problem (of the search for 

a continuous functions) correct. The choice of its values determines the quality of the solution. The 

choice is carried out by minimizing the root-mean-square error of cross-validation [2]. 

6.  Various identification problems and their numerical solution 

To find approximate solutions, we use numerical models, that are obtained from analytical ones by 

replacing of continues functions with either grid-functions or polynomials/smooth-polylines (only for 

K(T)), derivatives - with finite differences, integrals - with the sums. Note that the grid used for 

numerical model (41 points in x with a step equal to 0.05 and 21 points in t with a step equal to 0.25) 

is not tied to the measurement points in any way. For simplicity (and stability of calculations), an 

implicit four-point scheme [6] was used for approximation of temperature derivatives. 

The following notations are used for errors below: 

   
  – error of cross-validation (°C), the main indicator of the “quality” of the constructed model;  

rmsd* - standard deviation (°C) of the SvF solution from observations,  

Δ - standard deviation (°C) of the SvF solution from the exact one. 

6.1.   K(T) - 7th degree polynomial and least square fitting 

Let's solve the problem of finding unknown functions by the least squares method (without 

regularization). See figure 2. 

Errors (°C):     
 =3.52, rmsd*= 1.05, Δ=2.38.  

 

  

Figure 2. MSD-minimization solution of Problem 6.1. (a) contour lines of the 

solution T(x,t); (b) thermal conductivity: K – solution, Ks – exact solution. 
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6.2.  K(T) - 7th degree polynomial and SvF-method 

The formulation seems to be more consistent with the physics of the phenomenon – regularization 

occurs at the level of functions that determine the solution, and not at the solution itself. See figure 3. 

Errors (°C):     
 =2.22, rmsd*=1.82, Δ=0.83. 

 

  

Figure 3. SvF solution of Problem 6.2. (a) contour lines of the solution T(x,t); (b) 

thermal conductivity: K – solution, Ks – exact solution. 

6.3.  K(T) – Smooth-polyline and SvF-method 

The setting differs from the previous one by using Smooth-polyline (the number of nodes is 16, 

ε=0.001) for approximation K(T). See figure 4. 

Errors (°C):     
 =2.20, rmsd*= 1.78, Δ=0.82. 

 

  

Figure 4. SvF solution of Problem 6.3. (a) contour lines of the solution T(x,t); (b) 

thermal conductivity: K – solution, Ks – exact solution. 

7.  Discussion 

Solution 5.1 describes the temperature dynamics relatively well (figure 2a). However, the lack of 

regularization causes the least squares method to try to repeat random errors in the solution, which 

leads to a “motley picture” and a far from accurate solution for the thermal conductivity (figure 2b). 

The use of regularization enables to smooth the solution T(x,t) noticeably (see figure 2a and 3a) 

and increase the modeling accuracy. Pay attention to the incorrect behavior of the thermal conductivity 

near the right border of the graph in figures 2b and 3b. This is due to the small amount of experimental 

data in the region (lower left corner of the graph) where the temperature is close to 100 degrees. 
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Generally speaking, problems 5.2 and 5.3 lead to almost identical solutions. Thus, the use of an 

approximation method alternative to polynomials has been demonstrated. As expected, adding 

regularization terms leads to a more accurate (see Δ) modification of the model. In the technology 

used, this leads to a decrease in the    
  cross-validation error. It seems paradoxical that in this case the 

rmsd* error grows: the more accurate the model, the greater its root mean square deviation from 

observations. However, it is easy to explain. First of all, rmsd* is within the error limits of the initial 

data σd. Second, the better the model, the closer it is to the exact solution, and for the exact solution 

rmsd = σd. Of course, if too large regularization penalties are chosen, the solution will be distorted so 

that rmsd will be greater than σd.  

8.  Conclusions 

Regularization methods have a number of useful properties that make them efficient in solving inverse 

problems of experiments processing: 

 the ability to process noisy data with significant errors and to assess how this affects the 

processing results, 

 relative independence of numerical models grids from sets (grids) of measurements, 

 the ability to use fewer measurements, as regularization methods have inherent properties of 

interpolation and extrapolation. 

The problems (and their solution) considered in the article illustrate the effectiveness of the 

application of regularization methods and, in particular, the use of the balanced identification 

technology. As for computing resources, SvF technology is resource-intensive. This is justified as it is 

aimed at saving the researcher's time. 

Acknowledgments 

This research was carried out with the financial support of the Russian Scientific Foundation within 

the framework of the scientific project (grant) 22-11-00317. This work has been carried out using 

computing resources of the federal collective usage center Complex for Simulation and Data 

Processing for Megascience Facilities at NRC “Kurchatov Institute”. 

References 

[1] Tikhonov A N, Goncharsky A V, Stepanov V V and Yagola A G 1995 Numerical methods for 

the solution of ill-posed problems vol 328 (Springer Science & Business Media) 

[2] Sokolov A V and Voloshinov V V 2020 Model selection by balanced identification: the 

interplay of optimization and distributed computing Open Computer Science 10 283–95 

https://doi.org/10.1515/comp-2020-0116 

[3] Tikhonov A N 1980 On mathematical methods for automating the processing of observations. 

In: Computational Mathematics Problems (Moscow, Russia: Moscow State University 

Publishing House) pp 3-17 

[4] Chen C and Mangasarian O L 1996 A class of smoothing functions for nonlinear and mixed 

complementarity problems Comp. Opt. and App. 5(2) 97–138 

[5] Zhou Z and Peng Y 2019 The locally Chen–Harker–Kanzow–Smale smoothing functions for 

mixed complementarity problems J. of Global Opt 74(1) 169–93 

[6] Samarskii A A 2001 The theory of difference schemes (New York: Marcel Dekker) 

https://doi.org/10.1515/comp-2020-0116

