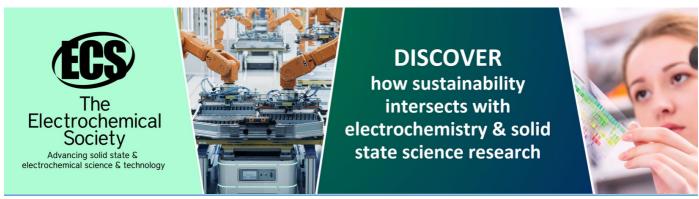
PAPER • OPEN ACCESS


MapReduce and Apache spark: technology analysis, advantages and disadvantages

To cite this article: T Q Urazmatov and X Sh Kuzibayev 2022 J. Phys.: Conf. Ser. 2373 052008

View the <u>article online</u> for updates and enhancements.

You may also like

- <u>Evaluation of Apache Hadoop for parallel</u> data analysis with ROOT
 S Lehrack, G Duckeck and J Ebke
- DisCANTree: A Distributed Algorithm for Incremental Frequent Itemset Mining based on MapReduce
 Wen Xiao and Juan Hu
- Mapreduce Iterative Computation Model Based on Non-Global Parallel and Heartbeat Synchronization Jun Yu, Lin Wang, Mingjie Xu et al.

2373 (2022) 052008 doi:10.1088/1742-6596/2373/5/052008

MapReduce and Apache spark: technology analysis, advantages and disadvantages

T Q Urazmatov and X Sh Kuzibayev

Urgench branch of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Urgench, Uzbekistan

E-mail: tohir20314@gmail.com

Abstract. Nowadays, it is absolutely illogical and impossible to process big data using traditional software methods and hardware. because too much data available does not allow this. However, there are some effective ways to perform such operations. This article discusses the main problems and solutions for processing big data. Today, there are a number of technologies and algorithms that process and analyze big data. This article mainly discusses, analyzes, and summarizes the advantages and disadvantages of the MapReduce architecture and Apache spark technology, and the results are presented in tabular form.

1. Introduction

Big data size means data that can be more than a hundred terabytes and petabytes. In addition, this information is regularly updated. For example, data from contact centers, social networks, stock trading data, and so on. Also, the concept of big data sometimes includes ways to process them. If we talk about terminology, then Big Data means not only data, but also the principles of processing large volumes of data, their subsequent use, the order of definition of a particular block of data in large arrays. Questions related to such processes do not lose their relevance.[13] Their solution is important for systems that produce and collect a variety of data over many years. Big data have the following main features.

- Volume about 1 petabyte and higher.
- Velocity high speed data creation, reception and processing
- Variety heterogeneity of data, lack of different formats and possible structure.

Often two more factors are added to these parameters:

- Variability different intensities of income influencing the choice of processing methods
- Value the difference in the level of complexity of the data obtained.

2. Materials and methods

Differences between MapReduce and Apache spark

MapReduce is a programming mechanism for processing and creating large data sets with a parallel, distributed algorithm in a computer cluster. MapReduce consists of several components, including:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Journal of Physics: Conference Series

2373 (2022) 052008 doi:10.1088/1742-6596/2373/5/052008

- JobTracker the main node that manages all work and resources in the cluster.
- TaskTrackers agents placed on each machine in the cluster to run the map and reduce tasks.
- JobHistoryServer a component that tracks the work done and is usually deployed as a separate function or with JobTracker.

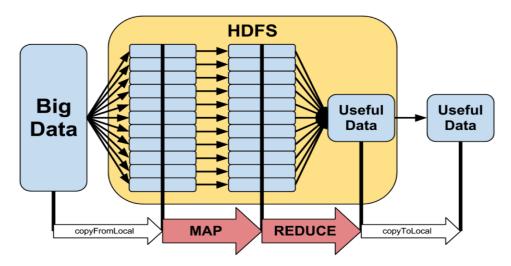


Figure 1. MapReduce architecture.

Apache Hadoop is one of the open-source software systems. It is developed for measure applications from a single server to hundreds of machines and run applications in accumulations with traditional equipment. The Apache Hadoop platform falls into two categories.

- Hadoop shared file system
- Recycled layer

The Hadoop storage layer, i.e. HDFS, is responsible for storing data, and the MapReduce is responsible for processing data in the Hadoop cluster. MapReduce is a programming model that provides extensions for tens of thousands of servers in a Hadoop accumulation. MapReduce is a machining technique and programming language for shared computing based on the Java programming model. MapReduce is a strong framing for processing large shared sets of configured or non-structured information in a Hadoop cluster stored in a Hadoop shared file system.[4] MapReduce's strong feature is its scalability.

Apache Spark is a cluster model shared for fast computing in the processing of big data. Apache Spark is a distributed recycling engine, but it does not come with a integral cluster resource manager and distributed warehouse system. You need to connect the selected cluster manager and the warehouse system. The Apache Spark consists of a set of libraries similar to the existing ones for the Spark kernel and Hadoop. [8] The core is a set of shared execution mechanisms and models. Apache Spark helps languages such as Java, Scala, Python, and R for developing shared applications. More libraries have been throwing out top of the Spark core to help workloads that use streaming, SQL, graphics, and machine learning. Apache Spark is a data processing mechanism for bulk and flow, which includes SQL queries, graphics, and machine learning. Apache spark can work separately, as well as in the Hadoop YARN steam supervisor, so that it can read available Hadoop information.

Journal of Physics: Conference Series 2373 (2022) 052008

doi:10.1088/1742-6596/2373/5/052008

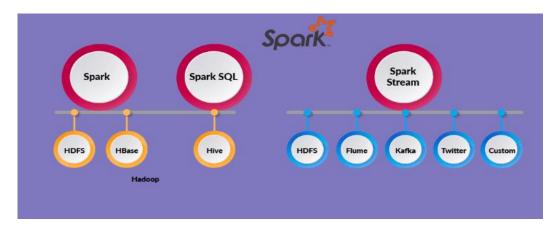


Figure 2. Apache spark technology.

The basic distinction among MapReduce and Apache spark

- MapReduce and Apache Spark are similar in terms of data types and information sources.
- MapReduce is based on hard drive, while Apache spark benefits fast remembrance and can benefit disk for cultivationing.
- Hadoop MapReduce is designed for non-volatile data, while Apache spark has superior production for non-volatile data, especially in allocated clusters.
- The basic distinction among MapReduce and Spark is that MapReduce benefits non-volatile memory, while Spark uses a permanently distributed information set.
- Apache spark and Hadoop MapReduce are both fault forbearing, but relatively more fault tolerant than Hadoop MapReduce Spark.
- Hadoop MapReduce jerrycan be an inexpensive choice because Hadoop is a service and Apache spark is economical due to high memory availability.
- Spark can do mass processing 20-200 tact's quicker than MapReduce, but both instruments are applied to process large amounts of data.[7]
- Hadoop MapReduce needs basic Java planning expertise, while Apache spark planning is not difficulted because it has an interactive way.

How to use MapReduce:

- In outline processing of big data sets
- When no halfway suspension is needed.

How to use Apache spark:

- When processing data quickly and interactively;
- When joining the data set;
- When processing schedules;
- When performing repetitive work;
- Real-time processing;
- In machine learning

3. Results

As a result of our research, we have the following facts. We compared MapReducate and Apache spark based on 20 types of parameters. We placed the results of the studies in the table below.

Journal of Physics: Conference Series

2373 (2022) 052008 doi:10.1088/1742-6596/2373/5/052008

IOP Publishing

Table 1. MapReduce and Apache spark differentiation list.

Parameters	(a) Apache spark	(b) MapReduce
SQL	Spark supports via SQL	Hive supports query language
	The security features of the Apache	The MapReduce framework is
Security	spark are evolving and becoming more	safer compared to the Apache
	sophisticated.	spark
Scheduler	Apache spark has its own planner	Depending on the external
		planner Both scales are restricted to
Palatability	Both scales are restricted to 2000 branches per cluster	2000 branches per cluster
	Apache spark interests RDD and other	2000 branches per cruster
Resistance to errors	preservation imitations for mistake	Use replication for error
resistance to errors	opposition	tolerance
		Slower than Apache spark
Processing speed	100 times faster in memory and 10 times	because if there is an input /
	faster on disk	output delay on the disk
		MapReduce is more suitable
Machine learning	Apache spark has built-in machine	with Apache Mahout when
Tracinite rearming	learning APIs	integrated with machine
		learning.
	A mark a smooth assessment a Jassa Carlo	The main language is Java, but
Language supporting	Apache spark supports Java, Scala, Python and R.	languages such as C, C++,
	Fython and R.	Ruby, Python, Perl, Groovy are also supported.
Interactive mode	Interactive	Not interactive
Infrastructure	Medium and high-level hardware	Brand equipment
11111 415 41 40 4 40 1	112010111 0110 111811 10 101 11110 11 011	Franco equipment
		Thanks to the MapReduce
Ease of use	Apache spark is uncomplicated to use	JAVA API, it is a bit more
	because of the APIs	complicated compared to the
		Apache spark
D 1' '	Apache spark processes each entry	M D I I (III)
Duplication elimination	exactly once, thus eliminating	MapReduce does not help this feature
emmination	duplication.	reature
Delay	Faster compared to MapReduce	Very high delay
•	Framework	very mgn delay
Information	Mass cultivationing, as well as real-time	For mass cultivationing only
cultivationing	information cultivationing	•
Costs	More expensive due to the huge quantity of RAM	Cheaper compared to Apache
	not difficult to compose and	spark Codes are hard to compose and
Complexity	troubleshooting	troubleshooting
	Apache spark can merge with each of	Suitable with each of
Suitabilitiy	information resource and file forms	information resource and file
•	helped by the Hadoop cluster.	forms
Coding	Fewer code rows	More code lines
Category	Data Analytics Engine	Data processing mechanism
Apache	An open-source substructure for high-	An open-source substructure for
	speed information cultivationing	information cultivationing

Journal of Physics: Conference Series

2373 (2022) 052008

doi:10.1088/1742-6596/2373/5/052008

4. Conclusion

Both of the above algorithms are important tools for processing large amounts of information. The main advantage of MapReduce is that the processing of cluster nodes is easy to solve. Apache Spark and MapReduce perform high-level calculations when both are used together. Apache Spark is mainly used for real-time data processing. In MapReduce and Apache Spark, data processing is limited to a thousand nodes per cluster. That's enough for a lot of data right now. MapReduce is a relatively secure system in terms of data and algorithm security. Apache Spark security is now evolving. Comparing the two financially, Spark requires a lot of money because it requires a high amount of RAM. Another key feature of both algorithms is their error tolerance level. MapReduce uses replication for error tolerance, while Apache Spark uses RDD models. Another key feature is the supported programming languages. MapReduce and Apache Spark also support several programming languages, including Java, C, C ++, Python, and other programming languages. In short, MapReduce and Apache Spark are the main tools for processing large amounts of data.

References

- [1] Franks B 2012 Taming the Big Data Tidal Wave Finding Opportunities in Huge Data Streams with Advanced Analytics (Wiley and SAS Business)
- [2] Gantz J and Rainsel D 2013 The digital universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East (United States)
- [3] Hadoop and Big Data: http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html.
- [4] Afzali G A and Mohammadi Sh 2016 Privacy Preserving Big Data Mining: Association Rule Hiding. 10.7508/jist.2016.02.001. http://www.jist.ir/Article/139504261512112857
- [5] Kachalov D L, Mishustin A V and Farkhadov M P Institute of Control Problems of the Russian Academy of Sciences named after V.A. Trapeznikova. Modern methods of processing big data in large-scale systems http://www.hozir.org/mapreduce-and-apache-spark-technology-analysis-advantages-and.html?page=4
- [6] Urazmatov T Q, Nurmetova B B and Kuzibayev X Sh 2020 *IOP Conf. Ser.: Mater. Sci. Eng.* **862** 042006